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The time-dependent congruences of Volterra-type dislocations are investigated based on
the generalized formulas of Frenet in a Riemannian space. The analysis is applied to the
description of congruences of edge and mixed dislocations consistent with a continuous
distribution of dislocations for which its material space is an equidistant Riemannian
space. In particular, the principal congruences of dislocations are considered. The kine-
matics of congruences of mixed dislocations endowed with univocally defined local slip
planes is discussed. It is shown that the geometry of such congruences of dislocations
admits a class of nonlinear evolution equations describing the curvature and torsion of
a congruence of curves in a Riemannian space. Additional conditions imposed on the
derived system of equations in order to describe the evolution of curvature and torsion
of congruences of edge dislocations are proposed. In the static case, an expression is
given for shear stresses required to bend prismatic edge dislocations of torsion zero
located on the totally geodesic crystal surfaces. It follows that the congruence of these
dislocations is endowed with a finite self-energy function.

1. INTRODUCTION

There are two basic types of dislocation movement,glide, in which the dis-
location moves in a surface, called theslip surface, which contains its line and
Burgers vector, andclimb, in which the dislocation moves out of this surface nor-
mal to the Burgers vector (Hull and Bacon, 1984). For example, a straightedge
dislocation has a rigorously definedslip planein which it can move. The plane
includes the dislocation and its Burgers vector orthogonal to the dislocation line.
Likewise, when a Burgers vector is not in the plane of a flat, curved edge dis-
location line, the dislocation has a rigorously definedslip surfacein which the
dislocation can glide. The dislocation is then called aprismatic dislocation. For
example, a prismatic edge dislocation loop can move only by glide on a cylindrical
surface, and if the loop expands or shrinks, climb must be occuring. There are also
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prismatic dislocations in the form of cylindrical helices. Namely, dislocations in
the form of a long spiral have been observed in crystals (Hull and Bacon, 1984).
The spiral dislocation lies on a cylinder whose axis is parallel to the Burgers vec-
tor, and the dislocation can glide on this cylinder. Consequently, theprismatic
helical dislocationis mixed(with edge and screw components; see hereafter and
Section 2). The planes tangent to the slip surface of a prismatic dislocation are
local slip planes. The Burgers vector of prismatic dislocations, edges as well as
mixed cylindrical helices, is parallel to the local slip planes. Note that the Burgers
vector of straightscrew dislocationis parallel to the dislocation line and thus the
glide of this dislocation is not restricted to a specific plane.

Theslip, which is the most common manifestation of plastic deformation in
crystalline solids, can be envisaged as sliding or successive displacement of one
plane of atoms over another on a distinguished plane called the (local or global)
slip plane. Discrete blocks of crystal between two slip planes remain undistorted
(Hull and Bacon, 1984). Consequently, any dislocation line in the crystal can
be treated as a line formed by means of a slip (homogeneous or not) such that
the dislocation becomes a boundary between the slipped and unslipped parts of
the crystal (Hull and Bacon, 1984; Fridmann, 1974). Theslip direction is then
parallel to the Burgers vector of the dislocation, and theslip magnitudeequals
the strength of dislocation. If we deal with a prismatic dislocation, then the slip is
calledprismatic. The above representation of a dislocation concerns flat as well
as spatial dislocation lines (Fridmann, 1974) and the dislocations so represented
are calledVolterra dislocations(Hull and Bacon, 1984). On the other hand, it is
known that the glide motion of many dislocations results in slip, and it is observed
that globally (i.e., on a macroscale) this motion is accompanied by the occurrence
of slip surfaces(Hull and Bacon, 1984). Therefore, we can generalize the notion
of line defects of a crystal structure by defining adislocation linein a continuously
dislocated crystal as a boundary between slipped and unslipped parts of the crystal
located on a slip surface. The so-definedVolterra-typedislocation line can be
endowed, in the continuous approximation, with the so-calledlocal Burgers vector
(Trze↪sowski, 1994) tangent to the slip surface along the line everywhere. Thus, a
resulting Burgers vectorof the dislocation can be defined (Trze↪sowski, 1994). The
glide motion of such an “effective” dislocation can be considered as amesoscopic
elementary act of macroplasticity (cf. Trze↪sowski, 1997). More generally, we can
extend this definition of dislocation lines on each curve (flat or spatial) that can be
endowed with the local Burgers vector in a manner consistent with the considered
continuous distributions of dislocations (Section 2). Later we consider, in general,
dislocation lines understood in this broader sense.

The occurrence of many dislocations in a Bravais crystal structure generates
a bend of originally straight lattice lines of this crystal structure (Orlov, 1983).
Consequently, thelattice linesin a continuously dislocatedBravais crystalform a
system of three independent congruences of curves, and tangents to these curves
define local crystallographic directionsof the continuized Bravais crystal with
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many dislocations. Planes spanned by two local crystallographic directions are
local crystal planes. In general, none of these congruences is normal (i.e., the
curves of the congruence are not orthogonal trajectories of a family of surfaces).
If a crystallographic congruence, that is, a congruence of lattice lines, is normal
and its curves are orthogonal to local crystal planes everywhere, then the curves
are orthogonal trajectories of a family ofcrystal surfacesof the continuously
dislocated Bravais crystal. The mean value of normal curvaturesκn of a crystal
surface in its local crystallographic directions (see, e.g., Eisenhart, 1964) can be,
for example, approximated by (Orlov, 1983)

κn = ρb, [κn] = cm−1, [ρ] = cm−2, [b] = cm, (1.1)

whereρ denotes the (mean) density of dislocations defined as the length of all dislo-
cation lines included in the volume unit, andb is the mean strength of dislocations.
If, additionally, the local crystal planes are local slip planes for a congruence of
dislocations, the crystal surfaces are virtually slip surfaces for dislocations of this
congruence. Such slip surfaces will also be calledglide surfaces. In particular, in
the case ofsingle glide, crystal planes originally parallel and normal to a lattice
direction pass into the glide surfaces without local stretchings (Bilbyet al., 1958)
and thus the crystal surfaces must be flat.

The occurrence of many dislocations in a Bravais crystal structure is accompa-
nied by the existence ofsecondary point defectsof this crystal structure created by
the distribution of dislocations. It is, for example, due to intersections of dislocation
lines: point defects can appear at crossover points of edge dislocation lines or when
two parallel dislocation lines join together (Oding, 1961). On the other hand, dis-
locations have no influence on local metric properties of a crystal structure (since
a crystal with many dislocations can be approximately considered locally as part
of an ideal crystal—Trze↪sowski, 1993). Consequently, the influence of secondary
point defects on the metric properties of a continuously dislocated Bravais crystal
can be modeled by the assumption that the considered body is additionally endowed
with a Riemannian metric that reduces to a Euclidean metric when dislocations
are absent (Trze↪sowski, 1994, 1995, 1997). The occurrence of secondary point
defects influences the geometry of crystal and slip surfaces as well as congruences
of dislocation lines. It can be described by means of the treatment of dislocation
lines, understood in the above-defined generalized sense, local crystal planes, and
local slip planes as those located in the above-definedRiemannian material space
(Sections 2 and 3). In particular, the geometry of congruences of dislocation lines
can be described based on the generalized formulas of Frenet in a Riemannian
space (Sections 5 and 6). The analysis is applied to the description of congruences
of dislocations consistent with a continuous distribution of dislocations for which
its material space is an equidistant Riemannian space (Sections 3–6).

The plastic flowin crystals with many dislocations is accompanied by the
motion of congruences of dislocations (Trze↪sowski, 1997, 2000). Therefore,
it is reasonable to study various kinematic properties of the motion of these
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congruences. The kinematic properties investigated in the paper concern congru-
ences of time-dependent mixed dislocations endowed with the univocally defined
local slip planes (Sections 2 and 7). The geometry of such congruences of disloca-
tions admits a class of nonlinear evolution equations describing the curvature and
torsion of a congruence of curves in a Riemannian space (Section 7). Additional
conditions imposed on the derived system of equations in order to describe the
evolution of curvature and torsion of congruences of edge dislocations are pro-
posed (Section 7). It is given, in the static case, an expression for shear stresses
required to bend prismatic edge dislocations of torsion zero located on the totally
geodesic crystal surfaces. It follows that the congruence of these dislocations must
be endowed with a finite self-energy function (Section 8).

2. LOCAL GLIDE SYSTEMS AND SLIP PLANES

Let B be a body identified with its distinguished spatial configuration being
an open and contractible to a point subset of the Euclidean configurational point
E3 of the body (Trze↪sowski, 1993). Let8 = (Ea; a = 1, 2, 3), [Ea] = cm−1, be
a dimensional base of smooth vector fields onB. Later, we consider dimensional
coordinate systemsX = (XA; A = 1, 2, 3), [XA] = cm, onB. Then

Ea = e
a

A∂A, ∂A = ∂
∂XA

[∂A] = cm−1, e
a

A ∈ C∞, [e
a

A] = [1], (2.1)

and the cobase8∗ = (Ea; a = 1, 2, 3) dual to8 has the following representation:

Ea = a
eAd XA, [Ea] = [d XA] = cm,

〈Ea, Eb〉 = a
eAe

b

A = δa
b. (2.2)

The object ofanholonomity(Ca
bc) of 8 is then given by

[Ea, Eb] = Ea ◦ Eb − Eb ◦ Ea = Cc
abEc,

Cc
ab ∈ C∞, [Cc

ab] = cm−1 (2.3)

If the object of anholonomity does not vanish identically, then the base8 can be
considered as defining a system of three independentcrystallographic congruences
of a continuously dislocated Bravais crystal and thus describing a bend, due to the
occurrence of many dislocations, of originally straight lattice lines (Section 1).
The base8 then is called aBravais moving frame. The object of anholonomity
of a Bravais moving frame represents thelong-range distortionof a continuously
dislocated Bravais crystal.

The influence of secondary point defects (Section 1) on the metric properties
of the continuously dislocated Bravais crystal is described by the followingintrinsic
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metric tensor(Trze↪sowski, 1994):

g = δabEa ⊗ Eb = gABd XA ⊗ d XB,

gAB = a
eA

b
eBδab, [g] = cm2. (2.4)

The Riemannian spaceBg = (B, g) is amaterial spaceassociated with the con-
sidered distribution of dislocations. Note that we can introduce, in a neighbor-
hood of each pointp ∈ B, the so-called normal Riemannian coordinatesξ = (ξa;
a = 1, 2, 3) (Eisenhart, 1964) such thatEa(p) = dξa

p in (2.4). It describes the
property of continuously dislocated crystals that dislocations have no influence
on the metric properties of an infinitesimal material neighborhood identified, in
the continuous limit, with a macroscopically small homogeneous neighborhood of
the crystalline body point (Trze↪sowski, 2000). This property can be extended on a
finite material neighborhood of each body point iff the Riemannian material space
is flat. Note that the flatness of the spaceBg does not mean a lack of dislocations
(see Section 3). Therefore, we consider the base vector fields of a Bravais moving
frame as those defining the local crystallographic directions (Section 1) as well
as local scales of an internal length measurement along these directions. It is a
representation of theshort-range orderof a continuously dislocated crystal.

Now, we can represent the influence of secondary point defects on the distri-
bution of dislocations (Section 1) by means of the treatment of the Bravais moving
frame8 = (Ea) and its object of anholonomity (Cc

ab) as geometric objects de-
fined on the Riemannian material spaceBg. This means that the base vector fields
Ea,a = 1, 2, 3, are considered as orthonormal,

Ea · Eb = e
a

Ae
b

BgAB = δab, (2.5)

and the so-calleddislocation density tensorα is defined by (Trze↪sowski, 1993)

α = αabEa ⊗ Eb, [α] = cm−3,

αab = −1

2
eacdCb

cd, [αab] = cm−1, (2.6)

whereeabc ∗= εabc denotes the permutation symbolεabc associated with Bravais
moving frame8 = (Ea) and considered as a contravariant 3-vector density of
weight+1 in Bg (GolÃa̧b, 1966). Likewise, thescalar volume dislocation density
ρ of a finite total lengthLd(B) of dislocation lines will be measured with respect
to the material volume 3-formωg:

0< Ld(B) =
∫
B
ρωg <∞, (2.7)

where

ωg = E1 ∧ E2 ∧ E3 = ed X1 ∧ d X2 ∧ d X3,

e= det
(a
eA
) = g1/2, g = det(gAB),

[ρ] = cm−2, [ωg] = cm3, [Ld(B)] = cm. (2.8)
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If l = l aEa, [l ] = cm−1, is a unit vector field defining a congruence of dislo-
cation lines in the continuized Bravais crystal (Section 1) and considered as these
located in the Riemannian material spaceBg (Section 1), then thelocal Burgers
vectorb of the congruence is defined by (Trze↪sowski, 1994, 1997)

b = baEa, [ba] = cm,

bg = ‖b‖g = (baba)1/2 > 0, ba = δacbc, [bg] = cm, (2.9)

where the componentsba of b are defined by

ρba = lbα
ba, la = δabl

b, lal a = 1, [ρ] = cm−2, (2.10)

andρ is the scalar volume dislocation density of (2.7). A dislocation line with its
unit tangentl and the local Burgers vectorb is interpreted as theedgedislocation
line if

b · l = bala = bgmala = 0, (2.11)

where

b = bgm, [m] = cm−1,

m= maEa, ‖m‖g = (mama)1/2 = 1, (2.12)

and (2.9) was taken into account. A dislocation line is interpreted as thescrew
dislocation line if

b = ηl , η 6= 0, (2.13)

In other cases, a dislocation is interpreted as themixed (with edge and screw
components) dislocation line.

If the unit vector fieldl defines a congruence of edge dislocation lines and
the vector fieldb of (2.9)–(2.12) is the local Burgers vector of this congruence,
then the familyπ (l ,m) of planes spanned by the vector fieldsl andm consists of
local slip planes(Section 1) of the congruence. The familyπ (l ,m) is univocally
defined by the congruence. Letn be the unit vector field onBg normal to the slip
planes of the congruence. The ordered triple (l ,m, n) is uniquely determined up
to its orientation and defines the two-dimensional distributionπn(l ,m) of oriented
local slip planes. The ordered triple (l ,m, n) and the ordered pair (m, n) are called
the local glide systemand thelocal slip systemof the congruence, respectively
(Trze↪sowski, 1997). The local slip system (m, n) defines local slip planes as those
normal to then direction and defines the directionm of local slips on these planes
(Section 1). This notion is used in plasticity theory, but the notion of local glide
system is not considered in this theory. If the oriented two-dimensional distribution
πn(l ,m) is (completely) integrable (Sikorski, 1972; Von Westenholz, 1978), then
through each point of the bodyB there passes a unique maximal integral manifold
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of the distribution. These integral manifolds are virtuallyoriented slip surfacesin
which dislocation lines of the congruence can glide (Section 1).

For screw dislocation lines, the local slip planes are not univocally defined.
Let us write, in order to describe congruences of mixed dislocations endowed with
univocally defined local slip planes, the dislocation density tensorα of (2.6) in the
following form:

αab = γ ab+ ωab, (2.14)

where

γ ab = α(ab), ωab = α[ab] = 1

2
tce

cba, (2.15)

and

ta = Cc
ac = eabcα

bc, (2.16)

whereeabc
∗= εabc denotes the permutation symbolεabc (=εabc) associated with

the Bravais moving coframe8∗ = (Ea) and considered as a covariant 3-vector
density of weight−1 in Bg (GolÃa̧b, 1966). The object of anholonomity can be
written, according to (2.6) and (2.14)–(2.16), in terms of the dislocation density
tensor:

Ca
ab = t[bδ

a
c] − ebcdγ

da. (2.17)

Therefore, the long-range distortion of the continuously dislocated Bravais crystal
characterizes the pair (γ, t), where

γ = γ abEa ⊗ Eb, γ ab = γ ba,

t = taEa, ta = δabtb, [γ ab] = [ta] = cm−1. (2.18)

Introducing designations

t = tgs, s= saEa, ‖s‖g = 1,

tg = ‖t‖g = (tata)1/2, [s] = [tg] = cm−1, (2.19)

and

M = MaEa = Mgm, ‖m‖g = 1,

Ma = lbscebca, sc = δcasa, (2.20)

where

Mg = ‖M‖g = sinϕ, cosϕ = s · l , 0< ϕ < π, (2.21)

we can write, according to (2.9), (2.10), (2.14), and (2.18)–(2.21), the local Burgers
vectorb in the form

ρb = γl + µm, l ·m= 0, µ = 1

2
Mgtg ≥ 0, [µ] = cm−1. (2.22)



P1: VENDOR

International Journal of Theoretical Physics [ijtp] PP048-292333 February 1, 2001 11:15 Style file version Nov. 19th, 1999

734 Trze↪sowski

It follows from (2.11) and (2.22) that a congruence of dislocation lines tangent
to thel direction consists of edge dislocations if

lγl = 0, ‖l‖g = 1. (2.23)

Moreover, each line inBg defines a dislocation line iff

γt 6= 0, or rankγ = 3. (2.24)

For example, ifγt = 0 for t 6= 0, then l = s does not define a congruence of
dislocations. Ift 6= 0 and rankγ = 3, then the condition (2.23) is fulfilled iffγ is
an indefinite nonsingular tensor field withl being its null (isotropic) vector field.
Thus, in this case, edge dislocation lines are located on null cones ofγ.

Let (l ,m, n) be a triple ofg-orthonormal vector fields defined by (2.22) and
the following condition:

nγl = 0. (2.25)

Then

b = b(l )l + b(m)m, l ·m= 0, n · b = 0. (2.26)

If the edge component ofb does not vanish, that is,b(m) 6= 0 in (2.26), then we can
assume, without loss of generality, that

ρb(m) = mγl + µ > 0, (2.27)

and the ordered triple (l ,m, n) is uniquely determined up to its orientation. Thus, we
have defined a congruence of mixed dislocations endowed with the familyπn(l ,m)
of oriented local slip planes containing the local Burgers vector of the congruence
everywhere. The two-dimensional distributionπn(l ,m) is univocally defined by
the edge component of the congruence of mixed dislocations. In particular, if the
unit vector fieldl of (2.22) is an eigenvector of the symmetric tensor fieldγ,
that is,

γ ablb = ηl a, lal a = 1, (2.28)

then

ρb = ηl + µm, l ·m= 0, (2.29)

and

ρbg = (η2+ µ2)1/2 > 0. (2.30)

The corresponding congruence of mixed dislocations as well as the local glide
system (l ,m, n) of its edge component are calledprincipal (Trze↪sowski, 2000).

The eigenvectorl of γ with the vanishing eigenvalue [η = 0 in (2.29)] defines
aprincipal congruence of edge dislocations. In this case,

ρb = µm, l ·m= 0, (2.31)
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and, according to (2.20)–(2.22) and (2.30), we have

ρbg = (tg/2) sinϕ, 0< ϕ < π. (2.32)

If γ = 0, then all lines, except those tangent to the direction oft for whichbg = 0,
are edge dislocation lines.

3. INSTANTANEOUS CRYSTAL SURFACES

The Bravais moving frame can be time dependent:8 = 8(t) = (Ea(·, t)),
t ∈ I ⊂ R+, [t ] = s. The object of anholonomity of (2.3) and the scalar volume
dislocation densityρ depend then on the time as a parameter. The instantaneous
intrinsic metric tensorsgt , t ∈ I , are defined by

gt (X) = g(X, t) = δabEa(X, t)⊗ Eb(X, t)

= gAB(X, t) d XA ⊗ d XB,

gAB(X, t) = a
eA(X, t)

b
eB(X, t)δab, (3.1)

where8∗(t) = (Ea(·, t)) is the moving coframe dual to8(t). The Riemannian
material spaceBg = (B, g) now denotes a time-dependent material space and
Bt = (B, gt ), t ∈ I , are the Riemannianinstantaneous material spaces. All previ-
ous formulas describing a continuous distribution of dislocations or congruences
of dislocations depend on the time as a parameter. In particular, we will deal, for
a time-dependent local glide system, with the instantaneous local slip planes and
slip surfaces.

Later, we assume additionally that the Bravais moving frame fulfils the fol-
lowing conditions:

[Eα, Eβ ] = Cκ
αβEκ , α, β, κ = 1, 2, (3.2)

and

[E3, Eα] = HEα, α = 1, 2, (3.3)

whereCκ
αβ and H are scalars defined onB × I . The condition (3.2) means that

the two-dimensional distributionsπt (E1, E2), t ∈ I , of instantaneous local crys-
tal planes (Section 1) normal to theE3 direction are integrable (Sikorski, 1972;
Von Westenholz, 1978) and their maximal integral manifolds areinstantaneous
crystal surfaces. These crystal surfaces are considered as two-dimensional sub-
manifolds of the instantaneous material spaces (Section 2).

It is easy to see that if there exists a coordinate systemX = (XA) = (Xκ , X3),
[XA] = cm, such that for eacht ∈ I (Trze↪sowski, 1997)

Eα(X, t)
∗= 9−1/2

t (X3)aα(Xκ ,t), E3(X, t)
∗= ∂3, (3.4)
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where
∗=means that a relation is defined using a distinguished coordinate system,

and

9t (X
3) = λ(t)2 exp[−2ht (X

3)], 9t (0)= 1, (3.5)

then the conditions (3.2) and (3.3) are satisfied with

Cκ
αβ(X, t) = 9−1

t (X3)cκαβ(Xω, t), [aα,aβ ] = cκαβaκ , (3.6)

and

H = H (X3, t) = ∂3ht (X
3). (3.7)

Moreover, in this case, for each pointp ∈ B, the surfaces6c, c ∈ R, defined as

6c = {q ∈ U : X3(q) = c}, (3.8)

wherep ∈ U andU is a coordinate neighborhood for coordinates of (3.4)–(3.8),
are time-independent slices of the instantaneous crystal surfaces. The above-
defined coordinates will be calledadapted. For any such coordinates,∂α = ∂/∂Xα,
α = 1, 2, is a local basis for each two-dimensional instantaneous distribution
πt (E1, E2), t ∈ I .

The instantaneous intrinsic metric tensorgt of (3.1) takes, in adapted coordi-
nates, the cannonical form of a metric tensor of the so-calledequidistant Rieman-
nian space(Trze↪sowski, 1997):

gt (X) = a(X, t)+ d X3⊗ d X3,

a(X, t) = 9t (X
3)at (X

κ ) = gαβ(X, t) d Xα ⊗ d Xβ, (3.9)

where

at (X
κ ) = δαβaα(Xκ , t)⊗ aβ(Xκ , t) = aαβ(Xκ , t) d Xα ⊗ d Xβ 〈aα,aβ, 〉 = δαβ ,

(3.10)

andat is the metric tensor of a general two-dimensional Riemannian space. The
treatment of instantaneous crystal surfaces as submanifolds of the instantaneous
Riemannian material spacesBt = (B, gt ) induces on the slices6c, c ∈ R, of these
surfaces a time-dependent geometric structure with the metric tensorac,t of the
form

ac,t (X
κ ) = 9t (c)at (X

κ ). (3.11)

It can be shown that the instantaneous crystal surfaces6c,t = (6c,ac,t ), are um-
bilical with the constant mean curvatureHt (c) given by (Trze↪sowski, 1997)

Ht (c) = H (c, t), (3.12)
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where the definition of the mean curvature according to Schouten (1954), in place
of the definition of Eisenhart (1964) that has been used in Trze↪sowski (1997), was
taken into account.

It is known that for any point of the two-dimensional (analytical) Riemannian
manifold6c,t there is a neighborhood that has an (analytical) isometric embedding
in the Euclidean configurational point spaceE3 of the body (Friedman, 1965).
The image of6c,t under this local embedding is a time-dependent surface in
E3 endowed with the same time-dependent Gaussian curvatureKt (Xκ , c) as the
submanifold6c,t ⊂ Bt has. This quantity is obtainable by means of measurements
within the surface; that is, it is an intrinsic geometric property of crystal surfaces due
to the influence of secondary point defects. However, the mean curvatureHt (c)
of 6c,t is not, in general, preserved under this embedding (since it is a relative
geometric quantity). Consequently, the mean curvature has the physical meaning
of a material parameter being, according to (3.3), a measure of the influence of
secondary point defects on the long-range distortion of the continuously dislocated
Bravais crystal. In particular, for a distribution of edge dislocations defined by the
conditionγ = 0 (see remarks at the very end of Section 2) and by (3.2)–(3.4), the
instantaneous crystal surfaces6c,t are flat manifolds, and thus this is virtually a
single glidecase (Section 1). Moreover, in this case (Trze↪sowski, 2000)

[E1, E2] = 0, [E3, Eα] = H Eα, α = 1, 2, (3.13)

and thus the mean curvatureH (c, t) of the umbilical crystal surfaces6c,t is the
only parameter describing the long-range distortion. Note that the instantaneous
Riemannian material spaceBt can be locally isometrically embedded inE3 iff Bt

is a flat Riemannian space [see the commentary following (2.4)]. For example, the
Bravais moving frame8 = (Ea) such that

[E1, E2] = γ E3, [E1, E3] = −γ E2, [E2, E3] = 0,

γ = const> 0, [γ ] = cm−1, (3.14)

describes a distribution of dislocations for which its Riemannian material space
Bg is flat (Trze↪sowski, 2000).

Let us denote by∇g = (0A
BC[g]) the Levi-Civita covariant derivative based

on the Christoffel symbols0A
BC[g] corresponding to the metric tensorg defined by

(3.1) and (3.9) and dependent on the time as a parameter. The Christoffel symbols
have the form0A

BC[g] = 0A
BC[gt ], t ∈ I , where, according to (3.11) and (3.12)

[Trze↪sowski, 1997; see the remark following (3.12)]

03
33[gt ] = 03

3α[gt ] = 0α33[gt ] = 0,

0αβ3 = −Htδ
α
β , 03

αβ [gt ] = Ht gαβ,

0καβ [gt ] = 0καβ [ac,t ] = 0καβ [at ]. (3.15)
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Let ∇a = (0καβ [at ]) denote the Levi-Civita covariant derivative based on the
Christoffel symbols0καβ [at ], t ∈ I , corresponding to the metric tensorat of (3.10).
If u = uA∂A is a time-dependent vector field tangent toBg = (B, g), then the
components∇g

AuB of its covariant derivative∇gu take, according to (3.15), the
following form:

∇g
βuα = ∇a

βuα − δαβ Hu3, ∇g
βu3 = ∂βu3+ Hgβκu

κ ,

∇g
3 uα = ∂3uα − Huα, ∇g

3 u3 = ∂3u3; α, β, κ = 1, 2, (3.16)

where

∇αβuα = ∂βuα + 0αβκ [at ]u
κ . (3.17)

In particular, if

u · E3 = 0, i.e., u = uα∂α, u3 = 0, (3.18)

then

∇g
βuα = ∇a

βuα, ∇g
βu3 = Hgβκu

κ ,

∇g
3 uα = ∂3uα − Huα, ∇g

3 u3 = 0, (3.19)

and if l = l A∂A is also orthogonal toE3, then the covariant derivative∇g
l u of u in

the direction ofl is given by

∇g
l u = l A∇g

Au = ∇a
l u+ (H l · u)E3,

E3 · ∇a
l u = 0, l · u = gABl AuB = gαβ l αuβ, u3 = l 3 = 0. (3.20)

Moreover, it follows from (3.4) and (3.19) that

∇g
E3

u = ∂3u− Hu, u · E3 = 0, (3.21)

and, according to (3.4), (3.5), (3.7), and (3.21), we obtain

∇g
E3

Ea = 0, a = 1, 2, 3, (3.22)

which means that the considered Bravais moving frame is∇g parallel along lattice
lines (Section 1) normal to the family6 = {6c,t ; c ∈ R, t ∈ I } of instantaneous
umbilical crystal surfaces and constituting a time-independent geodesic congru-
ence in the time-dependent Riemannian material spaceBg = (B, g).

4. PRINCIPAL CONGRUENCES OF DISLOCATIONS

The notion of principal congruences of dislocations (Section 2) affords pos-
sibilities for the description of long-range distortions of continuously dislocated
Bravais crystals in terms of these congruences. Consequently, any congruence of
dislocations can be described in these terms.
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If the Bravais moving frame is defined by (3.2) and (3.3), then it follows from
(2.16) that

t1 = C2
12, t2 = C1

21, t3 = 2H, (4.1)

and the componentsαab of the dislocation density tensorα of (2.6) constitute the
following matrix:(

αab;
a ↓ 1, 2, 3

b→ 1, 2, 3

)
=
 0 t3/2 0
−t3/2 0 0

t2 −t1 0

 . (4.2)

The matrix of componentsγ ab of the symmetric partγ of the dislocation density
tensor has the form(

γ ab;
a ↓ 1, 2, 3

b→ 1, 2, 3

)
=
0 0 α

0 0 β

α β 0

 , (4.3)

where

α = t2/2, β = −t1/2. (4.4)

The eigenvectorsγa, a = 1, 2, 3, of the symmetric tensorγ of (2.18), computed
with respect to the intrinsic metric tensorg of (3.1), are defined by

γγa = γaγa, γa · γb = δab, a, b = 1, 2, 3, (4.5)

where the eigenvaluesγa, a = 1, 2, 3, are roots of the determinant equation

det(γ ab− λδab) = λ(λ− γ )(λ+ γ ) = 0, γ = (α2+ β2)1/2 ≥ 0. (4.6)

Introducing the angleθ by

θ = 1√
2

arctg

(
−α
β

)
, (4.7)

and taking into account (4.4), we obtain

t1 = −2γ cos
√

2θ, t2 = −2γ sin
√

2θ. (4.8)

A straightforward computation shows that (4.5) is satisfied by the following eigen-
vectors ofγ:

γ1 =
1√
2

(k+ E3), γ2 =
1√
2

(k− E3),

γ3 = cos
√

2θE1+ sin
√

2θE2,

k = sin
√

2θE1− cos
√

2θE2, (4.9)
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with the corresponding eigenvalues ofγ given by

−γ1 = γ2 = γ, γ3 = 0. (4.10)

Thus, we obtain

γ = γ (−γ1⊗ γ1+ γ2⊗ γ2), γ ≥ 0, (4.11)

and, according to (4.1), (4.8), and (4.9), the vector fieldt of (2.18) and (2.19) takes
the form

t = 2(−γγ3+ HE3), tg = 2(γ 2+ H2)1/2 > 0. (4.12)

It follows from (4.9), (4.11), and (4.12) that [see (2.24)]

γt = −2γHk, γ 2+ H2 6= 0. (4.13)

Let us consider a general congruence of dislocations defined by (2.19)–(2.22),
(4.9), (4.11), and (4.12). The local Burgers vectorb of the congruence is given by

ρb = γ [−(l · γ1)γ1+ (l · γ2)γ2] + (tg/2)M,

(tg/2)M = γ K + H [(l · E2)E1− (l · E1)E2], M · l = 0,

K = cosϕl ,E3k− cosϕl ,k E3, cosϕa,b = a · b/‖a‖g‖b‖g, (4.14)

and

cosϕl ,b = (2γ /ρbg) cosϕl ,k cosϕl ,E3. (4.15)

It follows that the congruence consists of edge dislocations iff

γ cosϕl ,k cosϕl ,E3 = 0, (4.16)

or it consists of screw dislocations iff

ρbg = 2γ|cosϕl ,k cosϕl ,E3| > 0. (4.17)

If the Bravais moving frame is defined by (3.4)–(3.7), then

t1(X, t) = 9−1/2
t (X3)c2

12(X
κ , t),

t2(X, t) = 9−1/2
t (X3)c1

21(X
κ , t), t3(X, t) = 2H (X3, t) (4.18)

and thus, in the adapted coordinates (Section 3), we have (Trze↪sowski, 2000)

∂3θ = 0, (4.19)

where (4.4) and (4.7) were taken into account. In this case, the scalarH defines
the constant mean curvatureHt (c) [see (3.12)] of instantaneous umbilical crys-
tal surfaces6c,t , c ∈ R, t ∈ I , normal to theE3 direction (Section 3), and the
condition

H = 0, (4.20)
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means that these surfaces are minimal varieties (Eisenhart, 1964). It follows from
(4.12)–(4.14) that

γt = 0, t = −tgγ3, tg = 2γ > 0, (4.21)

which means, according to (2.20)–(2.22), that the eigenvectorγ3 does not define a
congruence of dislocation lines. Therefore, if the condition (4.20) is fulfilled, then
the local Burgers vectorb of a congruence of dislocations is given by

ρb = −2γ cosϕl ,k E3, l 6= ±γ3, (4.22)

and

ρbg = 2γ|cosϕl ,k| > 0, (4.23)

where (4.9), (4.14), (4.21), and (4.22) were taken into account.

5. EDGE DISLOCATIONS

A comparison of (4.16) with (4.20)–(4.23) leads to the conclusion that a class
of congruences of edge dislocations that permits us to consider the particular case
of crystal surfaces being minimal varieties is defined by the following condition:

cosϕl ,E3 = l · E3 = 0. (5.1)

It follows from (4.14) that

ρb = H [(l · E2)E1− (l · E1)E2] − 2γ cosϕl ,k E3, (5.2)

and

ρbg = (H2+ 4γ 2 cos2 ϕl ,k)1/2 > 0. (5.3)

For example, it is the case ofprincipal glide system(l ,m, n) defined by [see Section
2 and (4.9) and (4.10)]

l = γ3, m= 1√
2

(γ1+ γ2) = k, n = 1√
2

(γ1− γ2) = E3, (5.4)

which defines, according to (5.1)–(5.3), aprincipal congruence of edge disloca-
tionssuch that

ρb = Hk, H > 0, (5.5)

and

ρbg = H. (5.6)

In this case,

l · E3 = l · k = k · E3 = 0. (5.7)
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If the Bravais moving frame is defined by (3.4)–(3.7), then the normal curva-
tureκn of the instantaneous umbilical crystal surfaces normal to theE3 direction
(Section 3) is the same for all their tangent directions and (Eisenhart, 1964)

κn = H. (5.8)

It follows from (5.6) and (5.8) that the following counterpart of the approximate
formula (1.1) holds (Trze↪sowski, 2000):

κn = ρbg. (5.9)

The curvature vectorκ of the congruence (Eisenhart, 1964) can be written, ac-
cording to (3.20) and (5.7), in the form

κ = ∇g
l l = κr + κn, κr · κn = 0, (5.10)

where

κr = ∇a
l l = κr mr , κn = κnn, (5.11)

and (5.4) and (5.9) were taken into account. If for each (X3, t) ∈ R× I [see (3.4)]

∇a
l Eα = 0, α = 1, 2, (5.12)

then, according to (4.9), (5.4), and (5.11), the following generalized formulas of
Frenet for a 2-manifold (cf. Hicks, 1965) hold:

∇a
l l = κr mr , ∇a

l mr = −κr l , (5.13)

where

mr = −k, κr =
√

2∂l θ > 0. (5.14)

So, the curvatureκ of the congruence has the form

κ = (κ2
r + κ2

n

)1/2 = [2(∂l θ )2+ H2]1/2. (5.15)

and the formulas (5.5), (5.7), and (5.13) mean that edge dislocation lines of the
congruence lie on the instantaneous umbilical crystal surfaces normal to theE3

direction and can glide in these surfaces. Thus, the instantaneous crystal surfaces
are virtuallyglide surfaces(Section 1) for the principal congruence of edge dis-
locations. The time-dependent scalarsκr = κr (Xκ , X3, t) andκn = κn(X3, t) are,
for X3 = c and at each instantt ∈ I , the relative curvature of the congruence re-
stricted to the crystal surface6c,t = (6c,ac,t ) and the normal curvature of this
surface for thel direction, respectively.

If the crystal surfaces normal to theE3 direction areminimal varieties, that
is, the condition (4.20) is satisfied, then the case

l = k, i.e., cosϕl ,k = 1, (5.16)
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defines, according to (5.1) and (5.2), a congruence of edge dislocations such that

ρb = −2γ E3, γ > 0, (5.17)

and

ρbg = 2γ. (5.18)

So, comparing (5.16) and (5.17) with (5.4), we can define the corresponding local
glide system of the congruence by

(l ,m, n) = (k,−E3,γ3). (5.19)

If, additionally, the condition (5.12) withl = k is satisfied, then

κ = ∇g
l l = ∇a

l l = −κγ3,

∇g
l γ3 = ∇a

l γ3 = κl ,

∇g
l E3 = 0, κ =

√
2∂l θ, (5.20)

where (3.20), (4.9), (4.20), and (5.16) were taken into account. We conclude, taking
the curvatureκ and the torsionτ of the congruence in the form

κ =
√

2∂l θ > 0, τ = 0, (5.21)

that the formulas (5.20) are the Frenet generalized formulas for a congruence in the
Riemannian spaceBg = (B, g) endowed with the Frenet vectors (ea; a = 1, 2, 3)
(cf. Hicks, 1965) of the form

e1 = k, e2 = −γ3, e3 = −E3. (5.22)

So, we have defined a congruence of edge dislocation lines of zero torsion located
on the instantaneous crystal surfaces normal to the local Burgers vector direction
[see (5.17)]. Moreover, it follows from (3.3), (3.4), (3.7), (4.9), (4.19), (4.20), and
(5.16) that we have

[E3, k] = 0. (5.23)

This means, according to (5.16) and (5.17), that the congruence consists of pris-
matic edge dislocations (Section 1) withslip surfaces(Sections 1 and 2) normal
to the crystal surfaces.

6. HELICAL DISLOCATIONS

Let us consider a congruence of dislocation lines (edge or mixed) with the local
Burgers vectorb defined by (2.19)–(2.22). The formulas (5.20)–(5.22) suggest that
we consider an orthonormal one-parameter base (ea(·, t); a = 1, 2, 3) of vector
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fields onBt , t ∈ I , such thate1 = l and, for each instantt ∈ I , the following
generalized formulas of Frenetare valid:

κ = ∇g
l l = κe2, κ > 0,

∇g
l e2 = −κl + τe3,

∇g
l e3 = −τe2, τ ≥ 0. (6.1)

The base (ea) consists then ofFrenet vectorsof the congruence:el = l is the
(instantaneous)tangent, e2 is the (instantaneous)principal normal, ande3 is the
(instantaneous)second normalof the time-dependent congruence of dislocations.
The vector fieldκ is the (instantaneous)curvature vectorof the congruence. The
scalarsκ andτ denote the (instantaneous)curvatureandtorsionof the congruence,
respectively.

Let us define, as an example, the Frenet vectors for a congruence of helical
dislocations (Section 1) consisting of cylindrical helices, as defined by the con-
dition that the curvature and torsion of the congruence maintain a constant ratio
(Laugwitz, 1965):

τ = cκ, c = const≥ 0, (6.2)

where, in general, the dimensionless constantc can be dependent on the time
parameter. The congruence of such curves is defined by the following generalized
formulas of Frenet:

∇g
l l = κe2, κ > 0, (6.3a)

∇g
l e2 = −κl + cκe3, (6.3b)

∇g
l e3 = −cκe2, c ≥ 0. (6.3c)

It follows from (6.3a) and (6.3c) that

cl + e3 = a, ∇g
l a = 0,

a2 = ‖a‖2g = 1+ c2 = const., (6.4)

where the vector fielda as well as its modulusa > 0 can be dependent on the time
parameter, and the unit tangentl is inclined, at each instantt ∈ I , at the constant
angleϕl ,a to the vector fielda:

cosϕl ,a = l · a
a
= c

a
, 0≤ ϕl ,a < π/2 (6.5)

Differentiating covariantly (6.3b) in the direction ofl , substituting (6.3a), and
taking into account (6.4), we obtain

∇g
l ∇g

l e2+ a2κ2e2 = ∂lκ(ca− a2l ). (6.6)
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It is easy to see that if

l = e1 = 1

a
(sinaθE1− cosaθE2+ cE3),

e2 = cosaθE1+ sinaθE2, a = aE3, (6.7)

where8 = (Ea) is a Bravais moving frame such that

∇g
l Ea = 0, a = 1, 2, 3, (6.8)

and the curvatureκ of the congruence has the form

κ = ∂l θ > 0, (6.9)

then the conditions (6.4)–(6.6) are satisfied with

e3 = − c

a
(sinaθE1− cosaθE2)+ 1

a
E3. (6.10)

Let us consider a Bravais moving frame defined by the conditions (3.2) and
(3.3), and let the angleθ of (6.7)–(6.10) cover that one of (4.7). Then, according
to (4.9), (4.11), (4.14), and (6.7), the formula (2.22) holds, where

γl = −γ
a

[ck+ cos(a−
√

2)θE3], (6.11)

and

µm= −γ c

a
k− 1

a
[H (cosaθE1+ sinaθE2)+ γ cos(a−

√
2)θE3]. (6.12)

Thus, the congruence consists of mixed helical dislocations and its local Burgers
vector is given by

ρb = −1

a
[H (cosaθE1+ sinaθE2)+ γ (1+ c) cos(a−

√
2)θE3]. (6.13)

If

c = 1, i.e., a =
√

2, (6.14)

then (6.11) and (6.12) reduce to

γl = −γ l , l = γ1, (6.15)

and

µm= γγ2−
H√
2
γ3. (6.16)

The formula (6.13) then takes the following form:

ρb = − H√
2
γ3−

√
2γ E3. (6.17)
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So, it is aprincipal congruence of mixed helical dislocations. Note that if the
Bravais moving frame is defined by (3.4)–(3.7), then it follows from (3.16)–(3.19),
(3.22), (4.9), (6.7), and (6.14) that the condition (6.8) is equivalent to the following
conditions:

∇a
k Eα = 0, α = 1, 2, (6.18)

and

H = 0. (6.19)

The local Burgers vectorb then takes the form

ρb = −γa, a =
√

2E3, (6.20)

with

ρbg =
√

2γ, (6.21)

andb is inclined, at each instantt ∈ I , at the constant angleϕl ,b = 3π/4 to the
unit tangentl of dislocation lines. The corresponding principal local glide system
(Section 2) and the Frenet moving trihedron are given by

(l ,m, n) = (γ1,γ2,γ3),

(e1, e2, e3) = (γ1,γ3,−γ2). (6.22)

The formulas (6.2) and (6.9) reduce to

τ = κ = 1√
2
∂kθ > 0, (6.23)

where (4.19) and (6.14) are taken into account.
It follows from (4.9), (6.7), and (6.11) that

lγl = −γ c

a2
cos(a−

√
2)θ, γ > 0, (6.24)

and thus, according to (2.23), the considered congruence of cylindrical helices
consists of edge dislocation lines if

c = 0, i.e.,a = 1. (6.25)

Then

l = e1 = sinθE1− cosθE2,

e2 = cosθE1+ sinθE2,

e3 = a = E3, (6.26)
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and

γl = −γ cos(
√

2− 1)θE3,

µm = −He2− γ cos(
√

2− 1)θE3. (6.27)

In particular, if the instantaneous crystal surfaces are minimal varieties, that is, the
condition (6.19) is fulfilled, then

ρb = −2γ cos(
√

2− 1)θE3, (6.28)

with

ρbg = µ > 0,

µ = 2γ cos(
√

2− 1)θ, 0≤ θ < π/2(
√

2− 1). (6.29)

Thus, the corresponding local glide system has the form

(l ,m, n) = (e1,−e3, e2), (6.30)

and the curvature and torsion of the congruence are given by

κ = ∂l θ > 0, τ = 0. (6.31)

If the Bravais moving frame is defined by (3.4)–(3.7), then the condition (6.18)
with k = l and the condition (6.19) are satisfied. Moreover, in this case, the formula
(5.23) withk = l is valid. So, we have defined a congruence ofhelical prismatic
edge dislocationsof torsion zero analogous to the one discussed at the very end
of Section 5.

7. KINEMATICS OF CONGRUENCES OF DISLOCATIONS

Let us consider a congruence of mixed dislocations endowed with the local
glide system (l ,m, n) uniquely determined up to its orientation (Section 2). If
(ea; a = 1, 2, 3) is the Frenet moving trihedron of the congruence (Section 6),
then

e1 = l , e2 = cosϑm+ sinϑn,

e3 = − sinϑm+ cosϑn. (7.1)

It follows from (2.26), (6.1), and (7.1) that

∇g
l b = [∂l b(l ) − b(m)κ cosϑ ]l + [∂l b(m) + b(l )κ cosϑ ]m

+ [b(m)(τ − ∂lϑ)+ b(l )κ sinϑ ]n. (7.2)

Therefore, at each body point, the local Burgers vectorb of the congruence as
well as its variation∇g

l b in thel direction are located in the same local slip plane
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(Section 2) normal to then direction iff

b(m)(τ − ∂lϑ)+ b(l )κ sinϑ = 0, κ > 0. (7.3)

Note that, according to (2.11) and (2.26), the congruence consists of edge dislo-
cations iff

b(l ) = b · l = 0, b(m) 6= 0, (7.4)

where (2.27) was taken into account. So, in this case, the condition (7.3) reduces
to the following representation of the torsionτ of the congruence:

τ = ∂lϑ ≥ 0. (7.5)

In the following, we will consider the congruences of mixed dislocations restricted
by the above condition. This means that theclimb component(Section 1)

n · ∇g
l b = b(l )κ sinϑ, n · b = 0, (7.6)

of the local Burgers variation is admitted.
Equation (7.1) can be rewritten in the following complex form:

N = m+ i n = (e2+ i e3)eiϑ , l = e1, (7.7)

where

N · N = l · N = 0, N · N∗ = 2, l · l = 1, (7.8)

and the asterisk denotes the complex conjugation. Introducing the complex variable
ψ of the form

ψ = κeiϑ , κ > 0, (7.9)

whereκ is the curvature of the congruence, and taking into account the formula
(7.5), we can rewrite the generalized formulas of Frenet (6.1) in terms of the local
glide system (l , N) and the complex varialeψ :

κ = 1

2
(ψ∗N + ψN∗), ∇g

l N = −ψ l . (7.10)

Note that the unknown time-dependent scalarsκ andτ of the generalized
Frenet formulas (6.1) can be treated as those that distinguish one class of congru-
ences of moving dislocations from another [see (7.1) or (7.7)]. Consequently, the
complex version (7.10) of these formulas needs additionalkinematic equations
defining the evolution of curvature and torsion of a congruence of moving dislo-
cations. A method of deriving such equations, based on the Frenet formulas for a
single curve in the Euclidean spaceR3, has been formulated in order to describe the
motion of a very thin isolated vortex filament (Hashimoto, 1972; see also Lamb,
1977, 1980). The method can be generalized in order to describe a congruence of
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time-dependent curves in a Riemannian space. Namely, by putting

∂t N = ω1N + ω2N∗ + ωl ,

∂t l = ω3N + ω4N∗ + ω5l , (7.11)

and noting the relations of (7.8) and their partial derivatives with respect to time,
we obtain

ω1 = i ζ, ω2 = ω5 = 0, ω3 = −ω∗/2, ω4 = −ω/2, (7.12)

whereω andζ denote the complex and real scalars defined onB × I , respectively.
So, we have

∂t N = ωl + i ζN,

∂t l = −1

2
(ω∗N + ωN∗), [ω] = [ζ ] = s−1. (7.13)

The condition

∂t∇g
l N = ∇g

l (∂t N), (7.14)

puts the following constrains on (7.10) and (7.13):

∂tψ + ∂lω − i ζψ = 0, (7.15a)

∂l ζ = i

2
(ωψ∗ − ω∗ψ) = Im(ω∗ψ). (7.15b)

Note that (7.15b) means that the following condition should be fulfilled:

∂tκ = ∇g
l (∂t l ). (7.16)

The system of Eqs. (7.15) is not closed, and thus some additional conditions
are needed. Let us assume, for example, that the scalarω of (7.15) is real. It
reduces (7.9) and (7.15) to the following system of three real equations for four
real variablesκ, ϑ, ζ , andω:

∂tκ + cosϑ∂lω = 0,

κ(ζ − ∂tϑ)+ sinϑ∂lω = 0,

∂l ζ = ωκ sinϑ, (7.17)

where the versorl is treated as a fixed variable. Let us take, as an example, the
principal congruence of edge dislocations defined by (3.2)–(3.7), (3.22), (4.19),
(5.1), and (5.4)–(5.15). The principal normale2 of the congruence (Section 6) can
be written in the form

e2 = −sinσm+ cosσn,

sinσ = κr /κ, cosσ = H/κ, κ = (κ2
r + H2

)1/2
, (7.18)
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where (5.4), (5.8), and (5.10)–(5.15) were taken into account. Comparing (7.1)
with (7.18), we obtain

σ = 3π/2+ ϑ,
σ = arctg(κr /H ), κr =

√
2∂l θ, (7.19)

and thus, taking into account (3.4), (4.9), (4.19), and (5.4), we obtain the following
additional condition:

κ sinϑ = H, 0< ϑ < π, ∂l H = 0, (7.20)

whereH = H (X3, t) is, for X3 = c, the mean curvature of the instantaneous crys-
tal surfaces6c,t , t ∈ I (Section 3) being virtually glide surfaces for dislocations
of the congruence (Section 5). Note that it follows from (2.26), (5.4)–(5.6), (7.2)–
(7.5), and (7.20) that the variation∇g

l b in thel direction of the local Burgers vector
b of the congruence has the form

∇g
l b = −H

ρ

[
Hctgϑ l + ∂l ln

(
ρ

ρ0

)
m
]
. (7.21)

Straightforward computations show that the system of Eqs. (7.17) and (7.20)
leads to the following nonlinear evolution equation:

∂tκ + 1

Hκ

√
κ2− H2∂l ∂l ζ = 0 (7.22)

where

ζ = ∂t H√
κ2− H2

, ∂l H = 0. (7.23)

Moreover,

ϑ = arcsin(H/κ), (7.24)

and

ω = 1

H
∂l ζ + ω0, ∂lω0 = 0. (7.25)

Note that if

∂t H = 0, i.e., H = H (X3) (7.26)

then, according to (7.22)–(7.25), the system of Eqs. (7.17) reduces to

ζ = ω = 0, ∂tκ = 0, ∂tϑ = 0 (7.27)

and it follows from (7.5), (7.7), and (7.13) that

∂t l = ∂tm= ∂tn = 0, ∂tτ = 0. (7.28)
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The additional conditions

∂tρ = 0, ∂tγ = 0 (7.29)

then lead to

∂tγ = 0, ∂t t = 0, ∂tb = 0 (7.30)

where (4.9), (4.11), (4.12), (5.4), (5.5), and (7.26) were taken into account. Thus,
the system of Eqs. (7.17) and (7.20) admits a static principal congruence of edge
dislocations defined by the conditions (7.26) and (7.29).

Let us take as the second example, the congruence of prismatic edge dislo-
cations of zero torsion defined by (5.16)–(5.23). In this case,ϑ = −π/2 in (7.1),
and (7.17) reduces to

∂tκ = 0, ∂lω = ζκ, ∂l ζ = −ωκ. (7.31)

We can rewrite (7.31) in the form

∂lw = i κw, w = ζ + iω, ∂tκ = 0 (7.32)

where the following condition should be fulfilled:

∂l |w| = 0, |w|2 = ζ 2+ ω2 6= 0. (7.33)

It follows that if

κ =
√

2∂l θ > 0, ∂t l = 0, ∂tθ = 0, (7.34)

then the complex function

w = w0ei
√

2θ (7.35)

wherew0 is a real constant, satisfies (7.32) and (7.33), and (5.21) holds. Moreover,
according to (5.19), (5.20), (7.16), and (7.34), the conditions of (7.28) are satisfied.
The additional conditions of (7.29) then lead, according to (4.9), (4.11), (4.12),
(4.20), (5.17), and (5.19), to the formulas of (7.30). Thus, the system of Eqs. (7.17)
and the conditions (4.20) and (7.29) enable us to consider the static congruence of
prismatic edge dislocations of zero torsion defined by (5.17)–(5.19) and (5.22).

8. FINAL REMARKS

Let as consider the static congruence of prismatic edge dislocations of zero
torsion (Sections 5–7). It is the congruence of dislocation lines as intersections of
two orthogonal families of surfaces: the crystal surfaces (on which the dislocations
are located) and the slip surfaces (in which the dislocations can move) (Section 5).
The crystal surfaces are umbilical minimal varieties (Sections 3 and 5) and thus
these aretotally geodesicsurfaces in the (time-independent) equidistant material
Riemannian spaceBg = (B, g) (Eisenhart, 1964). This means, among others, that
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normals to these surfaces are parallel in the enveloping material space (Eisenhart,
1964), that is,

∇gm= 0, (8.1)

where, according to (5.17), (5.19), (5.22), and (5.23), the fieldm of local Burgers
vector directions covers with the second normale3 of the congruence and the
local Burgers vectorb = bgm is tangent to the slip surfaces. The totally geodesic
(crystal) surfaces are an evident generalization of (crystal) planes of Euclidean
3-space (Eisenhart, 1964).

It is known that a dislocation of zero torsion lying in a Euclidean plane
experiences astatic straightening forceper unit length of dislocation acting against
the direction of curvature vectorκ and tending to straighten the line (Hull and
Bacon, 1984), that is, the forcef such that [see (6.1)]

f = −Sκ = −Sκe2, f ·m= f · l = 0,

S> 0, κ > 0; [e2] = [κ] = cm−1, (8.2)

whereκ is the curvature ande2 is the principal normal of the congruence. If the
relation (8.2) is assumed to be valid for the considered congruence of prismatic
edge dislocations of zero torsion lying in the totally geodesic crystal surfaces in
Bg, then

fg = || f ||g = Sκ, [ fg] = kg cm−1, [S] = kg. (8.3)

The dislocation line will only remain curved if there is a shear stress that
produces a force on the dislocation needed to maintain its curvatureκ (Hull and
Bacon, 1984). So, letT be a symmetric stress tensor considered as acting in
the material Riemannian spaceBg (Trze↪sowski, 1997, 2000), that is,T can be
interpreted as aninternalstress tensor dependent on the distribution of dislocations
and secondary point defects. LetT = mTn denote the field ofshear stresses
resolved in the directionm of the local Burgers vectorb of the congruence. The
shear stressesT act in the oriented local slip planesπn(l ,m) (Section 2) and the
static straightening forcef is normal to these planes. We assume, generalizing
the statement of Hull and Bacon (1984), that a dislocation line of the strengthbg

will be in local equilibriumin its curved position when

T = fg

bg
, [bg] = cm, [T ] = kg cm−2. (8.4)

Substitutingfg from (8.3), we obtain

S= T bg

κ
. (8.5)

The quantitySof (8.5) has units energy per unit length and thus the dislocation line
has aline tensionthat is analogous to the surface tension of a soap bubble or liquid
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(Hull and Bacon, 1984). Note that the formula (8.5) generalizes the expression
of line tension of a curved dislocation lying in a Euclidean plane (see Hull and
Bacon, 1984).

The strengthbg of the considered dislocations can be written, according to
(5.18), in terms of scalar characteristicsγ andρ of the continuous distribution of
dislocations:

bg = 2γ

ρ
. (8.6)

The formulas (8.5) and (8.6) lead to the following expression of shear stresses
required to bend dislocation lines of the congruence:

T = Edρκ, Ed = S

2γ
(8.7)

where Ed > 0 has units of energy, that is, [Ed] = kg cm. This means that the
considered congruence of prismatic edge dislocations is endowed with a finite
self-energy functionEd.
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