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Congruences of Dislocations in Continuously
Dislocated Crystals
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The time-dependent congruences of Volterra-type dislocations are investigated based on
the generalized formulas of Frenet in a Riemannian space. The analysis is applied to the
description of congruences of edge and mixed dislocations consistent with a continuous
distribution of dislocations for which its material space is an equidistant Riemannian
space. In particular, the principal congruences of dislocations are considered. The kine-
matics of congruences of mixed dislocations endowed with univocally defined local slip
planes is discussed. It is shown that the geometry of such congruences of dislocations
admits a class of nonlinear evolution equations describing the curvature and torsion of
a congruence of curves in a Riemannian space. Additional conditions imposed on the
derived system of equations in order to describe the evolution of curvature and torsion
of congruences of edge dislocations are proposed. In the static case, an expression is
given for shear stresses required to bend prismatic edge dislocations of torsion zero
located on the totally geodesic crystal surfaces. It follows that the congruence of these
dislocations is endowed with a finite self-energy function.

1. INTRODUCTION

There are two basic types of dislocation movemglitle, in which the dis-
location moves in a surface, called thp surface which contains its line and
Burgers vector, andlimb, in which the dislocation moves out of this surface nor-
mal to the Burgers vector (Hull and Bacon, 1984). For example, a stradg#
dislocation has a rigorously definstlp planein which it can move. The plane
includes the dislocation and its Burgers vector orthogonal to the dislocation line.
Likewise, when a Burgers vector is not in the plane of a flat, curved edge dis-
location line, the dislocation has a rigorously defirgtip surfacein which the
dislocation can glide. The dislocation is then callegrismatic dislocationFor
example, a prismatic edge dislocation loop can move only by glide on a cylindrical
surface, and if the loop expands or shrinks, climb must be occuring. There are also
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prismatic dislocations in the form of cylindrical helices. Namely, dislocations in
the form of a long spiral have been observed in crystals (Hull and Bacon, 1984).
The spiral dislocation lies on a cylinder whose axis is parallel to the Burgers vec-
tor, and the dislocation can glide on this cylinder. Consequentlyptisenatic
helical dislocationis mixed(with edge and screw components; see hereafter and
Section 2). The planes tangent to the slip surface of a prismatic dislocation are
local slip planes The Burgers vector of prismatic dislocations, edges as well as
mixed cylindrical helices, is parallel to the local slip planes. Note that the Burgers
vector of straighscrew dislocations parallel to the dislocation line and thus the
glide of this dislocation is not restricted to a specific plane.

Theslip, which is the most common manifestation of plastic deformation in
crystalline solids, can be envisaged as sliding or successive displacement of one
plane of atoms over another on a distinguished plane called the (local or global)
slip plane Discrete blocks of crystal between two slip planes remain undistorted
(Hull and Bacon, 1984). Consequently, any dislocation line in the crystal can
be treated as a line formed by means of a slip (homogeneous or not) such that
the dislocation becomes a boundary between the slipped and unslipped parts of
the crystal (Hull and Bacon, 1984; Fridmann, 1974). Bhip directionis then
parallel to the Burgers vector of the dislocation, and gl magnitudeequals
the strength of dislocation. If we deal with a prismatic dislocation, then the slip is
calledprismatic The above representation of a dislocation concerns flat as well
as spatial dislocation lines (Fridmann, 1974) and the dislocations so represented
are calledVolterra dislocationgHull and Bacon, 1984). On the other hand, it is
known that the glide motion of many dislocations results in slip, and it is observed
that globally (i.e., on a macroscale) this motion is accompanied by the occurrence
of slip surfaceqHull and Bacon, 1984). Therefore, we can generalize the notion
of line defects of a crystal structure by definindislocation linein a continuously
dislocated crystal as a boundary between slipped and unslipped parts of the crystal
located on a slip surface. The so-defindmlterra-typedislocation line can be
endowed, in the continuous approximation, with the so-cédieal Burgers vector
(Trzesowski, 1994) tangent to the slip surface along the line everywhere. Thus, a
resulting Burgers vectasf the dislocation can be defined (Temavski, 1994). The
glide motion of such an “effective” dislocation can be consideredragesoscopic
elementary act of macroplasticity (cf. Temvski, 1997). More generally, we can
extend this definition of dislocation lines on each curve (flat or spatial) that can be
endowed with the local Burgers vector in a manner consistent with the considered
continuous distributions of dislocations (Section 2). Later we consider, in general,
dislocation lines understood in this broader sense.

The occurrence of many dislocations in a Bravais crystal structure generates
a bend of originally straight lattice lines of this crystal structure (Orlov, 1983).
Consequently, thiattice linesin a continuously dislocateBravais crystaform a
system of three independent congruences of curves, and tangents to these curves
definelocal crystallographic direction®f the continuized Bravais crystal with
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many dislocations. Planes spanned by two local crystallographic directions are
local crystal planesin general, none of these congruences is normal (i.e., the
curves of the congruence are not orthogonal trajectories of a family of surfaces).
If a crystallographic congruencehat is, a congruence of lattice lines, is normal
and its curves are orthogonal to local crystal planes everywhere, then the curves
are orthogonal trajectories of a family ofystal surfacesof the continuously
dislocated Bravais crystal. The mean value of normal curvatyyed a crystal
surface in its local crystallographic directions (see, e.g., Eisenhart, 1964) can be,
for example, approximated by (Orlov, 1983)

1 [pl=cm™?2 [b] =cm, (1.1)

kn = pb, [kn] =cm™

wherep denotes the (mean) density of dislocations defined as the length of all dislo-
cation lines included in the volume unit, abés the mean strength of dislocations.
If, additionally, the local crystal planes are local slip planes for a congruence of
dislocations, the crystal surfaces are virtually slip surfaces for dislocations of this
congruence. Such slip surfaces will also be catjéde surfacesin particular, in
the case osingle glide crystal planes originally parallel and normal to a lattice
direction pass into the glide surfaces without local stretchings (Rit@f., 1958)
and thus the crystal surfaces must be flat.

The occurrence of many dislocations in a Bravais crystal structure is accompa-
nied by the existence akecondary point defects this crystal structure created by
the distribution of dislocations. Itis, for example, due to intersections of dislocation
lines: point defects can appear at crossover points of edge dislocation lines or when
two parallel dislocation lines join together (Oding, 1961). On the other hand, dis-
locations have no influence on local metric properties of a crystal structure (since
a crystal with many dislocations can be approximately considered locally as part
of an ideal crystal—Trzsowski, 1993). Consequently, the influence of secondary
point defects on the metric properties of a continuously dislocated Bravais crystal
can be modeled by the assumption that the considered body is additionally endowed
with a Riemannian metric that reduces to a Euclidean metric when dislocations
are absent (Traowski, 1994, 1995, 1997). The occurrence of secondary point
defects influences the geometry of crystal and slip surfaces as well as congruences
of dislocation lines. It can be described by means of the treatment of dislocation
lines, understood in the above-defined generalized sense, local crystal planes, and
local slip planes as those located in the above-defRiethannian material space
(Sections 2 and 3). In particular, the geometry of congruences of dislocation lines
can be described based on the generalized formulas of Frenet in a Riemannian
space (Sections 5 and 6). The analysis is applied to the description of congruences
of dislocations consistent with a continuous distribution of dislocations for which
its material space is an equidistant Riemannian space (Sections 3-6).

The plastic flowin crystals with many dislocations is accompanied by the
motion of congruences of dislocations (Tspavski, 1997, 2000). Therefore,
it is reasonable to study various kinematic properties of the motion of these
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congruences. The kinematic properties investigated in the paper concern congru-
ences of time-dependent mixed dislocations endowed with the univocally defined
local slip planes (Sections 2 and 7). The geometry of such congruences of disloca-
tions admits a class of nonlinear evolution equations describing the curvature and
torsion of a congruence of curves in a Riemannian space (Section 7). Additional
conditions imposed on the derived system of equations in order to describe the
evolution of curvature and torsion of congruences of edge dislocations are pro-
posed (Section 7). It is given, in the static case, an expression for shear stresses
required to bend prismatic edge dislocations of torsion zero located on the totally
geodesic crystal surfaces. It follows that the congruence of these dislocations must
be endowed with a finite self-energy function (Section 8).

2. LOCAL GLIDE SYSTEMS AND SLIP PLANES

Let B be a body identified with its distinguished spatial configuration being
an open and contractible to a point subset of the Euclidean configurational point
ES of the body (Trzeowski, 1993). Letb = (E,; a= 1,2, 3), [Ea] = cm L, be
a dimensional base of smooth vector fieldshriater, we consider dimensional
coordinate system¥ = (XA; A= 1,2, 3), [X"] = cm, onB. Then

Ea=€%a 9a= 53z
[l =cm, eheC>, [ =[1l, (2.2)
and the cobasé* = (E?;a = 1, 2, 3) dual to® has the following representation:
E2 = ead XA, [E?3] =[dXA] = cm,
(E2, Ep) = EAEA =682, (2.2)
The object ofanholonomity(CZ,) of @ is then given by
[Ea, Eb] = Eao Ep — Epo Ea = CSEe,
CspeC™, [Col=cm™ (2.3)

If the object of anholonomity does not vanish identically, then the dasan be
considered as defining a system of three indepermigsiallographic congruences
of a continuously dislocated Bravais crystal and thus describing a bend, due to the
occurrence of many dislocations, of originally straight lattice lines (Section 1).
The based then is called @&ravais moving frameThe object of anholonomity
of a Bravais moving frame represents theg-range distortiorof a continuously
dislocated Bravais crystal.

The influence of secondary point defects (Section 1) on the metric properties
ofthe continuously dislocated Bravais crystal is described by the followtrigsic
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metric tensoTrzesowski, 1994):
g = 8abE? ® EP = gapd XA ® d XB,
b
OaB = €aBsan, [g] = CNTP. (2.4)

The Riemannian spadé; = (B, g) is amaterial spaceassociated with the con-
sidered distribution of dislocations. Note that we can introduce, in a neighbor-
hood of each poinp € B, the so-called normal Riemannian coordindtes (£2;

a = 1,2, 3) (Eisenhart, 1964) such th&?(p) = d&J in (2.4). It describes the
property of continuously dislocated crystals that dislocations have no influence
on the metric properties of an infinitesimal material neighborhood identified, in
the continuous limit, with a macroscopically small homogeneous neighborhood of
the crystalline body point (Trz®wski, 2000). This property can be extended on a
finite material neighborhood of each body point iff the Riemannian material space
is flat. Note that the flatness of the spaggedoes not mean a lack of dislocations
(see Section 3). Therefore, we consider the base vector fields of a Bravais moving
frame as those defining the local crystallographic directions (Section 1) as well
as local scales of an internal length measurement along these directions. It is a
representation of thehort-range ordeof a continuously dislocated crystal.

Now, we can represent the influence of secondary point defects on the distri-
bution of dislocations (Section 1) by means of the treatment of the Bravais moving
frame ® = (E,) and its object of anholonomityC{,) as geometric objects de-
fined on the Riemannian material sp&&g This means that the base vector fields
E., a=1, 2, 3, are considered as orthonormal,

Ea- By = €'€%gas = ban, (2.5)
and the so-calledislocation density tensax is defined by (Trzeowski, 1993)

a=0o"E,® Ep, [a] =cm?,
1

a?® = —Ee""CdCE’d, [?°] = cm Y, (2.6)
wheree?b® = ¢ab¢ denotes the permutation symhPC associated with Bravais
moving frame® = (E,) and considered as a contravariant 3-vector density of
weight+1 in By (Golab, 1966). Likewise, thecalar volume dislocation density
p of a finite total lengthL 4(B) of dislocation lines will be measured with respect
to the material volume 3-formg:

0 < Ly(B) = / pwg < 00, (2.7)
B
where

wg=E'AEZABE =edX AdX?AdX3,

e= det(gA) =gY?, g=det@ag),
[p] =cm2, [wg] =cm®, [Ly(B)] =cm (2.8)
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If | =12E,, [I] = cm™1, is a unit vector field defining a congruence of dislo-
cation lines in the continuized Bravais crystal (Section 1) and considered as these
located in the Riemannian material spadgg(Section 1), then théocal Burgers
vectorb of the congruence is defined by (Temvski, 1994, 1997)

b=Db%E,, [b? =cm,
bg = [[bllg = (bab®)"/? > 0, by = 8ach®, [bg] =cm, (2.9)
where the componenb$ of b are defined by
ob? =1paP?, 1, =68.0° 143=1, [p]=cm? (2.10)
andp is the scalar volume dislocation density of (2.7). A dislocation line with its
unit tangent and the local Burgers vectbris interpreted as thedgedislocation
line if
b-1 =b,=bym?, =0, (2.11)
where
b=bgm, [m]=cm?,
m=m2E,, |Mllg=(Mam?)¥2 =1, (2.12)

and (2.9) was taken into account. A dislocation line is interpreted asdtesv
dislocation line if

b=nyl, n+#0, (2.13)

In other cases, a dislocation is interpreted asrttiged (with edge and screw
components) dislocation line.

If the unit vector field defines a congruence of edge dislocation lines and
the vector fieldb of (2.9)-(2.12) is the local Burgers vector of this congruence,
then the familyz (I, m) of planes spanned by the vector fieldsndm consists of
local slip planegSection 1) of the congruence. The famityl, m) is univocally
defined by the congruence. Liebe the unit vector field o8y normal to the slip
planes of the congruence. The ordered triplen; n) is uniquely determined up
to its orientation and defines the two-dimensional distributigth, m) of oriented
local slip planes. The ordered triple fn, n) and the ordered pain{, n) are called
thelocal glide systenand thelocal slip systenof the congruence, respectively
(Trzesowski, 1997). The local slip systemm(n) defines local slip planes as those
normal to then direction and defines the directiomof local slips on these planes
(Section 1). This notion is used in plasticity theory, but the notion of local glide
system is not considered in this theory. If the oriented two-dimensional distribution
ma(l, M) is (completely) integrable (Sikorski, 1972; Von Westenholz, 1978), then
through each point of the bodythere passes a unique maximal integral manifold
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of the distribution. These integral manifolds are virtualiyented slip surfacem
which dislocation lines of the congruence can glide (Section 1).

For screw dislocation lines, the local slip planes are not univocally defined.
Let us write, in order to describe congruences of mixed dislocations endowed with
univocally defined local slip planes, the dislocation density teasoir(2.6) in the
following form:

a? = b 4 20 (2.14)
where
2 — @) an _ plabl %tcecba’ (2.15)
and
ta = CS. = €anca™, (2.16)

whereesne = eane denotes the permutation symbgh. (=¢2°°) associated with

the Bravais moving coframé* = (E?) and considered as a covariant 3-vector
density of weight—1 in By (Golab, 1966). The object of anholonomity can be
written, according to (2.6) and (2.14)—(2.16), in terms of the dislocation density
tensor:

Therefore, the long-range distortion of the continuously dislocated Bravais crystal
characterizes the paiy(t), where

7 = VabEa ® Eba Vab = Vba»
t =t2E,, t2=46%t, [y =[t]=cm™. (2.18)
Introducing designations

t= th, S= SaEa7 ||S||g = 1’

tg = litllg = (tat*)*2, [s] = [tg] = cm ™, (2.19)
and
M = M2E; = Mgm, [m|lg =1,
M2 = 1,562 5 = §.aS2, (2.20)
where
Mg = [[M|lg =sing, cosp =s-l, O0<¢ <m, (2.21)

we can write, according to (2.9), (2.10), (2.14), and (2.18)—(2.21), the local Burgers
vectorb in the form

1
pb=~l4+um, | -m=0, u= 5|v|gtg >0, [ul=cml (2.22)
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Itfollows from (2.11) and (2.22) that a congruence of dislocation lines tangent
to thel direction consists of edge dislocations if

Iy =0, |lllg=1 (2.23)
Moreover, each line if8y defines a dislocation line iff
vt #£0, or ranky =3 (2.24)

For example, ifyt = 0 for t # O, thenl = s does not define a congruence of
dislocations. It # 0 and ranky = 3, then the condition (2.23) is fulfilled iff is
an indefinite nonsingular tensor field witlbeing its null (isotropic) vector field.
Thus, in this case, edge dislocation lines are located on null congs of

Let (I, m, n) be a triple ofg-orthonormal vector fields defined by (2.22) and
the following condition:

nyl = 0. (2.25)
Then
b= b(|)| + b(m)m, |l - m=0, n-b=0. (2.26)

If the edge component dfdoes not vanish, that iby,) # 0 in (2.26), then we can
assume, without loss of generality, that

Pbm =Myl +u > 0, (2.27)

andthe orderedtriplé,(m, n) is uniquely determined up to its orientation. Thus, we
have defined a congruence of mixed dislocations endowed with the fapiilym)

of oriented local slip planes containing the local Burgers vector of the congruence
everywhere. The two-dimensional distributiar(l, m) is univocally defined by

the edge component of the congruence of mixed dislocations. In particular, if the
unit vector fieldl of (2.22) is an eigenvector of the symmetric tensor figld

that is,

y®l, = I3, 112 =1, (2.28)

then
pb=nl+pum, | -m=0, (2.29)

and
pbg = (> + u?)"? > 0. (2.30)

The corresponding congruence of mixed dislocations as well as the local glide
system , m, n) of its edge component are callpdncipal (Trzesowski, 2000).

The eigenvectdrof « with the vanishing eigenvalue [= 0 in (2.29)] defines
aprincipal congruence of edge dislocatiots this case,

pb=pum, I -m=0, (2.31)
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and, according to (2.20)—(2.22) and (2.30), we have
pby = (tg/2)sing, 0< ¢ <. (2.32)

If v = 0, then all lines, except those tangent to the directiarfof whichby = 0,
are edge dislocation lines.

3. INSTANTANEOUS CRYSTAL SURFACES

The Bravais moving frame can be time dependdnt= ®(t) = (Ea(-, t)),
t e | C Ry, [t] =s. The object of anholonomity of (2.3) and the scalar volume
dislocation density depend then on the time as a parameter. The instantaneous
intrinsic metric tensors;, t € |, are defined by

8i(X) = g(X. 1) = 8E*(X. 1) ® E°(X, 1)
= gas(X, t)dX A ®@ dX®,

gas(X, t) = Ea(X, 1)8s(X, t)8ap, 3.1)

where ®*(t) = (E?(-, t)) is the moving coframe dual t&(t). The Riemannian
material space3y = (B, g) now denotes a time-dependent material space and
B: = (B, g,), t € |, are the Riemanniainstantaneous material spacesl previ-
ous formulas describing a continuous distribution of dislocations or congruences
of dislocations depend on the time as a parameter. In particular, we will deal, for
a time-dependent local glide system, with the instantaneous local slip planes and
slip surfaces.

Later, we assume additionally that the Bravais moving frame fulfils the fol-
lowing conditions:

[Eu., Eg] = Cgﬁ E«, a,8,k=12, 3.2)
and
[E31 EOZ] = HEO(» o = 17 21 (33)

whereCf, andH are scalars defined df x |. The condition (3.2) means that
the two-dimensional distributions (E;, E»), t € |, of instantaneous local crys-
tal planes (Section 1) normal to tit&; direction are integrable (Sikorski, 1972;
Von Westenholz, 1978) and their maximal integral manifoldsiaséantaneous
crystal surfacesThese crystal surfaces are considered as two-dimensional sub-
manifolds of the instantaneous material spaces (Section 2).

Itis easy to see that if there exists a coordinate system(X4) = (X*, X3),
[XA] = cm, such that for eache | (Trzesowski, 1997)

Eo(X, 1) = Wy Y2(X3)a, (X5 1), Es(X, t) = 85, (3.4)
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where= means that a relation is defined using a distinguished coordinate system,
and

W (X3) = A(t)? exp[-2h(X3)], ¥ (0)=1, (3.5)
then the conditions (3.2) and (3.3) are satisfied with
Cis(X, 1) = U (X3)ch, (X2, 1), [aw. ap] = Clpa. (3.6)
and
H = H(X3,t) = ash (X3). (3.7)

Moreover, in this case, for each poipte B, the surfaceX, ¢ € R, defined as
Ze=1{q e U: X¥q) =}, (3-8)

wherep € U andU is a coordinate neighborhood for coordinates of (3.4)—(3.8),
are time-independent slices of the instantaneous crystal surfaces. The above-
defined coordinates will be calledlapted For any such coordinates, = 9/9 X¥,
a=1,2, is a local basis for each two-dimensional instantaneous distribution
ﬂt(El, EZ), tel.

The instantaneous intrinsic metric tengpof (3.1) takes, in adapted coordi-
nates, the cannonical form of a metric tensor of the so-calipidistant Rieman-
nian spacgTrzesowski, 1997):

g(X) =a(X, t) +dXx3®dXx3,
a(X, t) = Y (X3a(X*) = gup(X, ) dX* ® d XP, (3.9)
where
ay(X*) = §opa”(X*, 1) @ @ (X, 1) = ap(X*, t)dX* @ dXP (a*, &g, ) = 55,
(3.10)

anda; is the metric tensor of a general two-dimensional Riemannian space. The
treatment of instantaneous crystal surfaces as submanifolds of the instantaneous
Riemannian material spacBs= (B, g;) induces on the slices., ¢ € R, of these
surfaces a time-dependent geometric structure with the metric tapsof the

form

act(X*) = Wi(c)ar (X¥). (3.11)

It can be shown that the instantaneous crystal surfages= (X¢, ac), are um-
bilical with the constant mean curvatuirk(c) given by (Trzesowski, 1997)

H:(c) = H(c, 1), (3.12)
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where the definition of the mean curvature according to Schouten (1954), in place
of the definition of Eisenhart (1964) that has been used insbaeski (1997), was
taken into account.

Itis known that for any point of the two-dimensional (analytical) Riemannian
manifoldX. ; there is a neighborhood that has an (analytical) isometric embedding
in the Euclidean configurational point spaEé of the body (Friedman, 1965).
The image ofX¢: under this local embedding is a time-dependent surface in
E?® endowed with the same time-dependent Gaussian curvi», c) as the
submanifoldX. ; C B has. This quantity is obtainable by means of measurements
withinthe surface; thatis, itis an intrinsic geometric property of crystal surfaces due
to the influence of secondary point defects. However, the mean curvdt(cke
of ¢t is not, in general, preserved under this embedding (since it is a relative
geometric quantity). Consequently, the mean curvature has the physical meaning
of a material parameter being, according to (3.3), a measure of the influence of
secondary point defects on the long-range distortion of the continuously dislocated
Bravais crystal. In particular, for a distribution of edge dislocations defined by the
conditiony = 0 (see remarks at the very end of Section 2) and by (3.2)—(3.4), the
instantaneous crystal surfacEs; are flat manifolds, and thus this is virtually a
single glidecase (Section 1). Moreover, in this case (Bagski, 2000)

[Ey, Eo] =0, [Es Eo] = HE,, =12, (3.13)

and thus the mean curvatuk¥(c, t) of the umbilical crystal surfaces.; is the

only parameter describing the long-range distortion. Note that the instantaneous
Riemannian material spa¢% can be locally isometrically embedded? iff 5,

is a flat Riemannian space [see the commentary following (2.4)]. For example, the
Bravais moving frameb = (E;) such that

[E1, Eo] = yE3, [Ei1, Es] =—yEj, [Es E3] =0,
y =const> 0, [y]=cm?, (3.14)

describes a distribution of dislocations for which its Riemannian material space
By is flat (Trzesowski, 2000).

Let us denote b9 = (I'5.[g]) the Levi-Civita covariant derivative based
on the Christoffel symbolE5.[g] corresponding to the metric tenspdefined by
(3.1) and (3.9) and dependent on the time as a parameter. The Christoffel symbols
have the forml'5.[g] = I'8c[g:], t € I, where, according to (3.11) and (3.12)
[Trzesowski, 1997; see the remark following (3.12)]

Fg?,[gt] = Fga[gt] =TIg[0] =0,
[hs = —Hidg, Fgﬂ[gt] = HtQqp,
Topl9] = Toplactd = Faglad. (3.15)
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Let V&= (I';5[a]) denote the Levi-Civita covariant derivative based on the
Christoffel symbold™;s[a:], t € I, corresponding to the metric tensgrof (3.10).

If u=u”da is a time-dependent vector field tangentdg = (B, g), then the
componentsVu® of its covariant derivativéZ9u take, according to (3.15), the
following form:

Vau® = Vau* — s5HU®, VIu® = 35U + Hopu”,
VIu® = 3u” — Hu, VI =303 o, B,k =12, (3.16)
where
VAU = 95U + T, [a]u”. (3.17)
In particular, if
u-E;=0, ie.,u=u%,, u®=0, (3.18)
then
Viu“ = Viu*, viu® = HggU*,
Viu® = d3u”* — Hu*, Viu® =0, (3.19)

and ifl =129, is also orthogonal t&3, then the covariant derivati\)égu ofuin
the direction of is given by

Viu = 1AVau = VAU + (HI - u)Es,
Es-VRU=0, | -u=gapl®uB=guleuf, u*=1°=0. (3.20)
Moreover, it follows from (3.4) and (3.19) that

VE,u=du—Hu, u-E3=0, (3.21)
and, according to (3.4), (3.5), (3.7), and (3.21), we obtain
VE,Ea=0 a=123, (3.22)

which means that the considered Bravais moving frar® iparallel along lattice

lines (Section 1) normal to the family = {Z¢1;c € R, t € 1} of instantaneous
umbilical crystal surfaces and constituting a time-independent geodesic congru-
ence in the time-dependent Riemannian material spgce (3, ).

4. PRINCIPAL CONGRUENCES OF DISLOCATIONS

The notion of principal congruences of dislocations (Section 2) affords pos-
sibilities for the description of long-range distortions of continuously dislocated
Bravais crystals in terms of these congruences. Consequently, any congruence of
dislocations can be described in these terms.
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If the Bravais moving frame is defined by (3.2) and (3.3), then it follows from
(2.16) that

ty=C2, t,=Cj, t3=2H, (4.2)

and the components*® of the dislocation density tenser of (2.6) constitute the
following matrix:

0 t2 O
oﬁ‘b;a¢ 1.23) _ —tz3/2 0 0}. (4.2)
b— 1,23
*m O -t 0

The matrix of componentg?” of the symmetric pary of the dislocation density
tensor has the form

0 0 «
- 1,2,3)
y a0 =0 0 B8], (4.3)
< b—1,23 (a B 0)
where
a=1t/2, B=-t1/2 (4.4)

The eigenvectorsy,, a = 1, 2, 3, of the symmetric tensey of (2.18), computed
with respect to the intrinsic metric tensgiof (3.1), are defined by

YYa =VYaYa: VYa:Vpb=0m ab=123, (4.5)
where the eigenvalueg, a = 1, 2, 3, are roots of the determinant equation
dety®® —a6®) =A(h — y)(A+7) =0, y =(@*+p)"?>0. (4.6
Introducing the anglé by

1 o
6 =— arctg —— ), (4.7)
745
and taking into account (4.4), we obtain
ty = —2y cosv/20, t, = —2y sinv/26. (4.8)

A straightforward computation shows that (4.5) is satisfied by the following eigen-
vectors ofy:

1 1
Y1 = —2(k+ E3), v.=—=(k—Ey),

V2 V2
3 = COSV20E1 + Sinv/20 E,
k = sinv/20E; — cosv20E,, (4.9)
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with the corresponding eigenvaluespfjiven by
-n=v2=vy, y3=0. (4.10)
Thus, we obtain

Y=y @71 +72®72), v =0, (4.11)

and, according to (4.1), (4.8), and (4.9), the vector fiedti(2.18) and (2.19) takes
the form

t = 2(—yvs + HE3), tg=2@%+H?H)Y2>0. (4.12)
It follows from (4.9), (4.11), and (4.12) that [see (2.24)]
~t = —2yHk, y?2+H2 0. (4.13)

Let us consider a general congruence of dislocations defined by (2.19)—(2.22),
(4.9), (4.11), and (4.12). The local Burgers vedi@f the congruence is given by

pb=y[=( v+ - 7272 + (tg/2M,
(tg/2M = yK + H[(I - E2)E1 — (I - E))E3], M -1 =0,
K = cosg g;k — cospikEs, cospap =a-b/laliglbllg,  (4.14)
and
cosgi b = (2y/pbg) cOSl k COSY E,- (4.15)
It follows that the congruence consists of edge dislocations iff
y COSy| x COSg| g, = 0, (4.16)
or it consists of screw dislocations iff
pby = 2y|cosg k Cosy g, > 0. (4.17)
If the Bravais moving frame is defined by (3.4)—(3.7), then
(X, 1) = W AR, 1),
ta(X, t) = W A3k, (XK, 1), (X, t) = 2H (X3, 1) (4.18)
and thus, in the adapted coordinates (Section 3), we haves@waki, 2000)
350 =0, (4.19)

where (4.4) and (4.7) were taken into account. In this case, the ddad@fines
the constant mean curvatukg(c) [see (3.12)] of instantaneous umbilical crys-
tal surfacesx.;, c € R, t € |, normal to theEgs direction (Section 3), and the
condition

H =0, (4.20)
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means that these surfaces are minimal varieties (Eisenhart, 1964). It follows from
(4.12)—(4.14) that

=0, t=—tgvs, tg=2y >0, (4.21)

which means, according to (2.20)—(2.22), that the eigenvegtdoes not define a
congruence of dislocation lines. Therefore, if the condition (4.20) is fulfilled, then
the local Burgers vectdy of a congruence of dislocations is given by

pb = —2y cosgiEa, | # vs, (4.22)
and
pby = 2y|cosg | > 0, (4.23)
where (4.9), (4.14), (4.21), and (4.22) were taken into account.

5. EDGE DISLOCATIONS

A comparison of (4.16) with (4.20)—(4.23) leads to the conclusion that a class
of congruences of edge dislocations that permits us to consider the particular case
of crystal surfaces being minimal varieties is defined by the following condition:

cosp g, =1-E3=0. (5.1)
It follows from (4.14) that
pb=HI[(I- E2)E1 — (I - E1)E2] — 2y cosg kEs, (5.2)
and
pbg = (H? + 4y2co ¢ k)2 > 0. (5.3)

Forexample, itis the casepfincipal glide syster(l, m, n) defined by [see Section
2 and (4.9) and (4.10)]

A=k n=-(ri-7)=Es (54
ﬁ ’71 ’72 — Ny - ﬁ ’Yl ’72 — 3 .
which defines, according to (5.1)—(5.3)p&ancipal congruence of edge disloca-
tionssuch that

| =73 m=

pb=Hk, H >0, (5.5)
and
pby = H. (5.6)
In this case,

|.Es=l-k=k-E3=0. (5.7)
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If the Bravais moving frame is defined by (3.4)—(3.7), then the normal curva-
tureky, of the instantaneous umbilical crystal surfaces normal tdghdirection
(Section 3) is the same for all their tangent directions and (Eisenhart, 1964)

kn=H. (5.8)

It follows from (5.6) and (5.8) that the following counterpart of the approximate
formula (1.1) holds (Trzsowski, 2000):

kn = pby. (5.9)

The curvature vectok of the congruence (Eisenhart, 1964) can be written, ac-
cording to (3.20) and (5.7), in the form

K= V|g| =Ky +Kn, Kr-kn=0, (5.10)

where
kr = VB = kemy,  Kn = knh, (5.11)
and (5.4) and (5.9) were taken into account. If for eah () € R x | [see (3.4)]
VAE, =0, a=1,2 (5.12)

then, according to (4.9), (5.4), and (5.11), the following generalized formulas of
Frenet for a 2-manifold (cf. Hicks, 1965) hold:

VA =keme, VEM = —xl, (5.13)
where
m = —k, Kk =~/286 > 0. (5.14)
So, the curvature of the congruence has the form
K = (K2 + k2)"? = [2(36)> + H V2. (5.15)

and the formulas (5.5), (5.7), and (5.13) mean that edge dislocation lines of the
congruence lie on the instantaneous umbilical crystal surfaces normal E;the
direction and can glide in these surfaces. Thus, the instantaneous crystal surfaces
are virtuallyglide surfacegSection 1) for the principal congruence of edge dis-
locations. The time-dependent scalars= «, (X, X3, t) andk, = «,(X3, 1) are,
for X3 = c and at each instate |, the relative curvature of the congruence re-
stricted to the crystal surfacg;; = (X¢, at) and the normal curvature of this
surface for the direction, respectively.

If the crystal surfaces normal to th&; direction areminimal varietiesthat
is, the condition (4.20) is satisfied, then the case

I =k, ie.,cospx=1, (5.16)
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defines, according to (5.1) and (5.2), a congruence of edge dislocations such that
ob=-2yE3, v >0, (5.17)
and
pby = 2y. (5.18)

So, comparing (5.16) and (5.17) with (5.4), we can define the corresponding local
glide system of the congruence by

(I, m,n) = (k, —Es, v3). (5.19)
If, additionally, the condition (5.12) with= k is satisfied, then
k =V = VPl = —ks,
VY3 = Vivs = «l,
VIEz =0, « =290, (5.20)

where (3.20), (4.9), (4.20), and (5.16) were taken into account. We conclude, taking
the curvature: and the torsionr of the congruence in the form

K = \/§3|9 >0, =0, (5.21)

that the formulas (5.20) are the Frenet generalized formulas for a congruence in the
Riemannian spacBy = (B, g) endowed with the Frenet vector(a = 1, 2, 3)
(cf. Hicks, 1965) of the form

eg=k, e=-v; e=-E;. (5.22)

So, we have defined a congruence of edge dislocation lines of zero torsion located
on the instantaneous crystal surfaces normal to the local Burgers vector direction
[see (5.17)]. Moreover, it follows from (3.3), (3.4), (3.7), (4.9), (4.19), (4.20), and
(5.16) that we have

[Es, k] =0. (5.23)

This means, according to (5.16) and (5.17), that the congruence consists of pris-
matic edge dislocations (Section 1) wihp surfacegSections 1 and 2) normal
to the crystal surfaces.

6. HELICAL DISLOCATIONS

Letus consideracongruence of dislocation lines (edge or mixed) with the local
Burgers vectob defined by (2.19)—(2.22). The formulas (5.20)—(5.22) suggest that
we consider an orthonormal one-parameter bagg, t); a = 1, 2, 3) of vector
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fields onB;, t € I, such thate; = | and, for each instartte |, the following
generalized formulas of Frenate valid:

m=V|gI =xe, k>0,
Vie = —kl + tes,
Vies = —16;, >0 (6.1)

The base &) consists then ofrenet vectorsof the congruenceg =1 is the
(instantaneoudpngent e, is the (instantaneougyincipal normal ande; is the
(instantaneousjecond normadf the time-dependent congruence of dislocations.
The vector fieldk is the (instantaneousyrvature vectoof the congruence. The
scalars andr denote the (instantaneousjrvatureandtorsionof the congruence,
respectively.

Let us define, as an example, the Frenet vectors for a congruence of helical
dislocations (Section 1) consisting of cylindrical helices, as defined by the con-
dition that the curvature and torsion of the congruence maintain a constant ratio
(Laugwitz, 1965):

T =Ck, C=const>0, (6.2)

where, in general, the dimensionless constanin be dependent on the time
parameter. The congruence of such curves is defined by the following generalized
formulas of Frenet:

V|g| =key, k>0, (6.3a)
V|gez = —«l + ckes, (6.3b)
Vile3 = —ckep, €>0. (6.3¢)

It follows from (6.3a) and (6.3c) that

d+e=a Va=0,

a’ = |al|5 = 1+ ¢® = const, (6.4)
where the vector field as well as its modulua > 0 can be dependent on the time

parameter, and the unit tangéns inclined, at each instamte |, at the constant
angleg, 5 to the vector fieldh:

l-a ¢
me=7;=5,0§@a<W2 (6.5)

Differentiating covariantly (6.3b) in the direction of substituting (6.3a), and
taking into account (6.4), we obtain

vPvie, + a%c?e, = di(ca — a?l). (6.6)
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It is easy to see that if
| =e = é(sina@ E; — cosafE;, + CcEj3),
e = cosafE, +sinadE,, a=akEj, (6.7)
where® = (E,) is a Bravais moving frame such that
VPEa=0, a=123, (6.8)
and the curvature of the congruence has the form
K =360 >0, (6.9)
then the conditions (6.4)—(6.6) are satisfied with
€ = —g(sinae E; — cosadEy) + %Eg. (6.10)

Let us consider a Bravais moving frame defined by the conditions (3.2) and
(3.3), and let the angle of (6.7)—(6.10) cover that one of (4.7). Then, according
to (4.9), (4.11), (4.14), and (6.7), the formula (2.22) holds, where

ol = —g[ck + cost— V29 Eq], (6.11)
and
um = —%Ck — g[H(cosae E1+ sinadE,) + y cos@ — V2)9Es].  (6.12)

Thus, the congruence consists of mixed helical dislocations and its local Burgers
vector is given by

pb = —g[H(cosae E1 + sinafE,) + y(1+ c) cos@ — v/2)0E3].  (6.13)

If

c=1, ie,a=+2 (6.14)
then (6.11) and (6.12) reduce to
¥l =—yl, | =~4, (6.15)
and
H
pum=y~vy, — Ve (6.16)
The formula (6.13) then takes the following form:
pb = —173 — V/2yEs. (6.17)

V2
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So, it is aprincipal congruence of mixed helical dislocatiori$ote that if the
Bravais moving frame is defined by (3.4)—(3.7), then it follows from (3.16)—(3.19),
(3.22), (4.9), (6.7), and (6.14) that the condition (6.8) is equivalent to the following
conditions:

ViE, =0, a =12 (6.18)
and
H=0. (6.19)
The local Burgers vectdry then takes the form
pb=—ya, a=+/2E;, (6.20)
with
pby = /2y, (6.21)

andb is inclined, at each instante |, at the constant anglg , = 37 /4 to the
unit tangent of dislocation lines. The corresponding principal local glide system
(Section 2) and the Frenet moving trihedron are given by

(I, m,n) = (71,72, 73)s
(e, €2, €3) = (71,73, —72)- (6.22)
The formulas (6.2) and (6.9) reduce to

1
T=Kk=——=0k0 >0, 6.23
N (6.23)

where (4.19) and (6.14) are taken into account.
It follows from (4.9), (6.7), and (6.11) that

C
Iyl = _2—2 cos@ — v2)9, y >0, (6.24)

and thus, according to (2.23), the considered congruence of cylindrical helices
consists of edge dislocation lines if

c=0, ie,a=1 (6.25)
Then
| = e =SinGE; — coSHE,,
€ = COSHYEq + SindE,,
e3=a=E;s, (6.26)
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and
~l = —y cos¢/2 — 1)9Eg,
um= —He, — y cosf/2 — 1)9Es. (6.27)

In particular, if the instantaneous crystal surfaces are minimal varieties, that is, the
condition (6.19) is fulfilled, then

pb = —2y cos/2 — 1)9Es, (6.28)
with
pbg = u >0,
pn=2ycosW/2—1), 0<6 <m/2(v2-1). (6.29)
Thus, the corresponding local glide system has the form
(I, m,n) = (e1, —e3, &), (6.30)
and the curvature and torsion of the congruence are given by
k=106>0 =0 (6.31)

If the Bravais moving frame is defined by (3.4)—(3.7), then the condition (6.18)
with k = | and the condition (6.19) are satisfied. Moreover, in this case, the formula
(5.23) withk =1 is valid. So, we have defined a congruencéelical prismatic
edge dislocationsf torsion zero analogous to the one discussed at the very end
of Section 5.

7. KINEMATICS OF CONGRUENCES OF DISLOCATIONS

Let us consider a congruence of mixed dislocations endowed with the local
glide systemI( m, n) uniquely determined up to its orientation (Section 2). If
(e5;a =1, 2, 3) is the Frenet moving trihedron of the congruence (Section 6),
then

e =1, e =cosydm+ sindn,
€3 = —sinym + cos¥n. (7.1)
It follows from (2.26), (6.1), and (7.1) that
Vb = [3bg) — bamyx cos?l + [8 by + bgyx cosy]m
+ [bm)(r — 99) + bgyx sind]n. (7.2)

Therefore, at each body point, the local Burgers vebtof the congruence as
well as its variationV,gb in thel direction are located in the same local slip plane
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(Section 2) normal to the direction iff
b(m)(‘t —99) + b(|)K sind =0, «>0. (7.3)

Note that, according to (2.11) and (2.26), the congruence consists of edge dislo-
cations iff

b(|) =b.1=0, b(m) # 0, (7.4)

where (2.27) was taken into account. So, in this case, the condition (7.3) reduces
to the following representation of the torsiorof the congruence:

In the following, we will consider the congruences of mixed dislocations restricted
by the above condition. This means that tienb componen{Section 1)

n- Vb = by sing, n-b=0, (7.6)

of the local Burgers variation is admitted.
Equation (7.1) can be rewritten in the following complex form:

N=m+in=(e+ie)e”, | =ey, (7.7)
where
N-N=I-N=0, N-N*=2, |.1=1, (7.8)

and the asterisk denotes the complex conjugation. Introducing the complex variable
Y of the form

v =€’ k>0, (7.9)

wherex is the curvature of the congruence, and taking into account the formula
(7.5), we can rewrite the generalized formulas of Frenet (6.1) in terms of the local
glide systeml( N) and the complex varialg:

K= %(w*N +¥N*), VN = —yl. (7.10)

Note that the unknown time-dependent scalaand ¢ of the generalized
Frenet formulas (6.1) can be treated as those that distinguish one class of congru-
ences of moving dislocations from another [see (7.1) or (7.7)]. Consequently, the
complex version (7.10) of these formulas needs additi&im@matic equations
defining the evolution of curvature and torsion of a congruence of moving dislo-
cations. A method of deriving such equations, based on the Frenet formulas for a
single curve in the Euclidean spaRé, has been formulated in order to describe the
motion of a very thin isolated vortex filament (Hashimoto, 1972; see also Lamb,
1977, 1980). The method can be generalized in order to describe a congruence of
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time-dependent curves in a Riemannian space. Namely, by putting
N = 1N + woN* 4+ ol ,
ol = w3N + wsN* + wsl, (711)

and noting the relations of (7.8) and their partial derivatives with respect to time,
we obtain

w1 =1, wr=w5=0, w3=—-w"/2, wy=—-w/2, (7.12)

wherew and¢ denote the complex and real scalars definef onl , respectively.
So, we have

1
ol = _Q(“’*N + N, [w]=[¢]=st (7.13)
The condition
®VEIN = V(& N), (7.14)
puts the following constrains on (7.10) and (7.13):
WY+ dw—ily =0, (7.15a)
[
¢ = E(ww* —o*Y) = Im(w*y). (7.15b)
Note that (7.15b) means that the following condition should be fulfilled:
dr = V2(3l). (7.16)

The system of Egs. (7.15) is not closed, and thus some additional conditions
are needed. Let us assume, for example, that the seatdr(7.15) is real. It
reduces (7.9) and (7.15) to the following system of three real equations for four
real variableg, ¥, ¢, andw:

otk + costow = 0,
k(¢ — 0¢P) + sinddw = 0,
3¢ = wk siny, (7.17)

where the versor is treated as a fixed variable. Let us take, as an example, the
principal congruence of edge dislocations defined by (3.2)—(3.7), (3.22), (4.19),
(5.1), and (5.4)—(5.15). The principal nornaalof the congruence (Section 6) can
be written in the form

€ = —Sincm + coson,

Sino =« /k, €C0So = H/k, k= (Krz + H2)1/2, (7.18)
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where (5.4), (5.8), and (5.10)—(5.15) were taken into account. Comparing (7.1)
with (7.18), we obtain

o =31/24+ 79,
o = arctgl: /H), Kk = /20,6, (7.19)

and thus, taking into account (3.4), (4.9), (4.19), and (5.4), we obtain the following
additional condition:

ksind =H, 0<9® <m, 9H=O0, (7.20)

whereH = H(X3, t)is, for X3 = ¢, the mean curvature of the instantaneous crys-
tal surfaceszc, t € | (Section 3) being virtually glide surfaces for dislocations
of the congruence (Section 5). Note that it follows from (2.26), (5.4)—(5.6), (7.2)—
(7.5), and (7.20) that the variati(mqb in thel direction of the local Burgers vector

b of the congruence has the form

H
vib = ——[Hctgz&‘l + am(ﬁ)m}. (7.21)
Lo ]

Straightforward computations show that the system of Egs. (7.17) and (7.20)
leads to the following nonlinear evolution equation:

ke + HLKMa ¢ =0 (7.22)
where
[ = %‘tf —. aH =0 (7.23)
Moreover,
¥ = arcsinH /), (7.24)
and
1
w = ﬁ8|§ + wg, dwo=0. (7.25)
Note that if
aH =0, ie,H=H(X3 (7.26)
then, according to (7.22)—(7.25), the system of Egs. (7.17) reduces to
{=w=0 dk=0 v =0 (7.27)

and it follows from (7.5), (7.7), and (7.13) that
atl =om=0on=0, ot =0. (728)
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The additional conditions
oo=0, 9y =0 (7.29)
then lead to
dy=0 t=0, 3b=0 (7.30)

where (4.9), (4.11), (4.12), (5.4), (5.5), and (7.26) were taken into account. Thus,
the system of Egs. (7.17) and (7.20) admits a static principal congruence of edge
dislocations defined by the conditions (7.26) and (7.29).

Let us take as the second example, the congruence of prismatic edge dislo-
cations of zero torsion defined by (5.16)—(5.23). In this cése, —7/2 in (7.1),
and (7.17) reduces to

ok =0, dw=2=_Ck, 0(=—wk. (7.31)
We can rewrite (7.31) in the form
ow=ikw, w=¢+iw, ok =0 (7.32)
where the following condition should be fulfilled:
dlw| =0, |w?=1%+w?#0. (7.33)
It follows that if
k=+236>0, 3l =0 46=0, (7.34)

then the complex function
w = wee V¥ (7.35)

whereuwy is a real constant, satisfies (7.32) and (7.33), and (5.21) holds. Moreover,
accordingto (5.19), (5.20), (7.16), and (7.34), the conditions of (7.28) are satisfied.
The additional conditions of (7.29) then lead, according to (4.9), (4.11), (4.12),
(4.20), (5.17), and (5.19), to the formulas of (7.30). Thus, the system of Egs. (7.17)
and the conditions (4.20) and (7.29) enable us to consider the static congruence of
prismatic edge dislocations of zero torsion defined by (5.17)—(5.19) and (5.22).

8. FINAL REMARKS

Let as consider the static congruence of prismatic edge dislocations of zero
torsion (Sections 5-7). It is the congruence of dislocation lines as intersections of
two orthogonal families of surfaces: the crystal surfaces (on which the dislocations
are located) and the slip surfaces (in which the dislocations can move) (Section 5).
The crystal surfaces are umbilical minimal varieties (Sections 3 and 5) and thus
these araotally geodesisurfaces in the (time-independent) equidistant material
Riemannian spacBy = (B, g) (Eisenhart, 1964). This means, among others, that
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normals to these surfaces are parallel in the enveloping material space (Eisenhart,
1964), that is,

VvIm =0, (8.1)

where, according to (5.17), (5.19), (5.22), and (5.23), the fretsf local Burgers
vector directions covers with the second norraalof the congruence and the
local Burgers vectob = bygm is tangent to the slip surfaces. The totally geodesic
(crystal) surfaces are an evident generalization of (crystal) planes of Euclidean
3-space (Eisenhart, 1964).

It is known that a dislocation of zero torsion lying in a Euclidean plane
experiences static straightening forcper unit length of dislocation acting against
the direction of curvature vectat and tending to straighten the line (Hull and
Bacon, 1984), that is, the forcesuch that [see (6.1)]

f=-Sk=-%e, f-m=f.1=0,
S>0, «>0; [e] =[«k]=cm?, (8.2)

wherex is the curvature and, is the principal normal of the congruence. If the
relation (8.2) is assumed to be valid for the considered congruence of prismatic
edge dislocations of zero torsion lying in the totally geodesic crystal surfaces in
By, then

fg=1fllg =S¢, [fg] =kgecm™, [S]=kg. (8.3)

The dislocation line will only remain curved if there is a shear stress that
produces a force on the dislocation needed to maintain its curvat{iell and
Bacon, 1984). So, leT be a symmetric stress tensor considered as acting in
the material Riemannian spaéy (Trzesowski, 1997, 2000), that i§, can be
interpreted as aimternalstress tensor dependent on the distribution of dislocations
and secondary point defects. LEt= mTn denote the field ohear stresses
resolved in the directiom of the local Burgers vectdrs of the congruence. The
shear stressek act in the oriented local slip planes(l, m) (Section 2) and the
static straightening forcd is normal to these planes. We assume, generalizing
the statement of Hull and Bacon (1984), that a dislocation line of the stréggth
will be in local equilibriumin its curved position when

f
T= b—g, [bg] =cm, [T]=kgcm? (8.4)
9
Substitutingfy from (8.3), we obtain
L (8.5)
K

The quantitySof (8.5) has units energy per unitlength and thus the dislocation line
has dine tensiorthat is analogous to the surface tension of a soap bubble or liquid
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(Hull and Bacon, 1984). Note that the formula (8.5) generalizes the expression
of line tension of a curved dislocation lying in a Euclidean plane (see Hull and
Bacon, 1984).

The strengthby of the considered dislocations can be written, according to
(5.18), in terms of scalar characteristicand p of the continuous distribution of

dislocations:
2
by = L. (8.6)
0

The formulas (8.5) and (8.6) lead to the following expression of shear stresses
required to bend dislocation lines of the congruence:

S
T = Edev Ed = — (87)
2y

where Eq > 0 has units of energy, that isE§] = kg cm. This means that the
considered congruence of prismatic edge dislocations is endowed with a finite
self-energy functiorkq.

REFERENCES

Bilby, B. A., Bullough, R., Gardner, L. R., and Smith, E. (1958j)oc. R. Soc. 244, 538-557.

Eisenhart, P. E. (1964Riemannian GeometryPrinceton University Press, Princeton, New Jersey.

Fridman, J. B. (1974Mechanical Properties of Metgl¥ol. 1, Maszinostroenie Moscow [in Russian].

Friedman, A. (1965)Rev. Mod. Phys37, 201-203.

Gofab, S. (1966)Tensor CalculusPWN, Warsaw, [in Polish].

Hashimoto, H. (1972)J. Fluid Mech.51, 477-485.

Hicks, N. J. (1965)Notes on Differential Geometryan Nostrand, Toronto.

Hull, D. and Bacon, D. J. (1984ntroduction to DislocationsPergamon Press, Oxford.

Lamb, G. L. (1977)J. Math. Phys18, 1654—-1661.

Lamb, G. L. (1980)Elements of Soliton Theary. Wiley, New York.

Laugwitz, D. (1965)Differential and Riemannian Geomet#cademic Press, New York.

Oding, I. A. (1961).Theory of Dislocations in Metal|®WT, Warsaw [in Polish].

Orlov, A. N. (1983).Introduction to the Theory of Defects in CrystaMyscaja Skola, Moscow
[in Russian].

Schouten, J. A. (1954Ricci-Calculug(Springer, Berlin).

Sikorski, R. (1972)Introduction to Differential GeometrPWN, Warsaw [in Polish].

Trzesowski, A. (1993)Rep. Math. Phys32, 71-98.

Trzesowski, A. (1994)Int. J. Theor. Phys33, 931-966.

Trzesowski, A. (1995)Fortschr. Physik43, 565-584.

Trzesowski, A. (1997)Int. J. Theor. Phys36, 2877—2911.

Trzesowski, A. (2000)Acta Mechanical4l, 173-192.

Von Westenholz, C. (1978Rifferential Forms in Mathematical PhysicSorth-Holland, Amsterdam.



